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1 Overview

1.1 What is a Programming Language?

A programming language is a structured system of communication designed to express computations
in an abstract manner.

1.2 Why Different Languages?

Different languages are built for different use cases. Below are popular languages that were built for
their respective use cases:

(i) Javascript is the most popular language for anything related to web development. There are many
frameworks for vanilla Javascript (e.g. React) as well as derivative languages (e.g. Typescript).

(ii) C/++ is a popular language for programs that require high performance (e.g. Linux).

(iii) C# is most commonly used for programs that are in Microsoft’s .NET ecosystem.

(iv) Python is a popular language used in the field of artificial intelligence.

(v) ba/z/sh is a scripting language for UNIX-based operating systems.

(vi) R is a popular language among statiticians (not sure why).

(vii) Lisp is a functional language used in the field of artificial intelligence and was used to write
Emacs.

(viii) SQL and its variants are a set of querying languages used to communicate with databases.

1.3 Language Paradigms

There are four main language paradigms:

(i) Imperative

(ii) Object-Oriented

(iii) Functional

(iv) Logic

1.3.1 Imperative Paradigm

Imperative programs use a set of statements (e.g. control structures, mutable variables) that directly
change the state of the program. More specifically, these statements are commands that control how
the program behaves. Common examples of imperative languages include FORTRAN and C.

1.3.2 Object-Oriented Paradigm

The object-oriented paradigm is a type of imperative programming, and contains support for structured
objects and classes that ”talk” to each other via methods (e.g. d is a Dog object with the class method
bark(), where d.bark() will invoke the bark function for the object d). Common examples of object-
oriented languages include Java and C++.

1.3.3 Functional Paradigm

Functional programming is a type of declarative programming. They use expressions, functions, con-
stants, and recursion to change the state of the program. There is no iteration or mutable variables.
Common examples of functional languages include Haskell and Lua.
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1.3.4 Logic Paradigm

Logic programming the most abstract and is a type of declarative programming. A set of facts and
rules are defined within the scope of the program. Common examples of logic languages are Prolog
and ASP.

1.4 Language Choices

There are many things to consider when building a programming language. Some of these include:

(i) Static/Dynamic type checking

(ii) Passing parameters by value/reference/pointer/object reference

(iii) Scoping semantics

(iv) Manual/Automatic memory management

(v) Implicit/Explicit variable declaration

(vi) Manual/Automatic bounds checking

Generally, a programming language can be broken down into its syntax and semantics.

2 Functional Programming (Haskell)

We will talk about functional programming as it pertains to Haskell, a purely functional language.

2.1 Overview

Haskell is a statically typed language that uses type inference. All functions must have the
following properties:

(i) Functions must take in an argument

(ii) Functions must return a value

(iii) Be pure (does not change the state of the program (Note: This includes I/O!)

(iv) In functions, all variables are immutable

(v) Functions are first-class citizens, so they are treated as data

2.2 Pure Functions

Given a fixed input x, it always returns the same output y. That is, it does not modify any data
beyond initializing local variables. Some consequences of this are:

(i) Multithreading easy in functional languages since there are no race conditions (everything is
immutable)

(ii) Execution order doesn’t matter: Functions are pure, so there are no side effects. Haskell has
lazy evalueation, so it will only execute what is referenced.

2.3 Syntax

Haskell syntax for defining a function is as follows:

function_name params = function_body
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2.3.1 Indentation

In Haskell, any part of an expression must be indented further than the beginning of the function. e.g.

mult x y =

x * y

2.4 Data Types and Operations

Since Haskell is statically typed and uses type inference, though the variables’ types are figured out
at compile time, we need not explicitly annotate them (though possible). The following are some of
Haskell’s primitives:

Int 64-bit signed integer

Integer Arbitrary-precision signed integer

Bool Boolean (True/False)

Char Characters

Float 32-bit (single-precision) floating point

Double 64-bit (double-precision) floating point

Syntax variable name = value :: type

Note :t variable name Returns the type of a variable

Operations

Arithmetic operations include +, -, *, /, ^ ‘div‘, ‘mod‘.

Note: Parentheses are required for the unary - (e.g. (-3) represents -3)

Note: Airthmetic operators can also be called using prefixed notation (e.g. (+) a b is equivalent
to a + b)

2.5 Composite Data Types

Some of the common composite data types are:

() Tuples: A fixed-size collection of data (may be different types)

[] Lists: A collection of data of the same type (internally, they are structured like a linked list)

[Char] Strings: A list of characters

2.5.1 Tuples

Tuples have two built-in functions: fst, snd which retrieve the first and second elements respectively.
Consequently, accessing any element after the second requires a user-defined function.

2.5.2 Lists

Lists are not arrays, and are structured internally like linked-lists. Therefore, most operations are
O(n) in time complexity.

head :: [a] -> a

head LIST Returns the head of the list.

tail :: [a] -> a
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tail LIST Returns the tail of the list.

take :: Int -> [a] -> [a]

take n LIST Returns the first n elements of the list.

drop :: Int -> [a] -> [a] t

drop n LIST Returns the last (length LIST) - n elements of the list.

(!!) :: [a] -> Int -> a

LIST !! n Returns the nth item of the list.

zip :: [a] -> [b] -> [(a, b)]

zip LIST 1 LIST 2 Returns a list of tuples of the form (ai, bi).
1

length :: [a] -> Int

length n LIST Returns the length of the list.

elem :: a -> [a] -> Bool

elem ITEM LIST Returns True if ITEM ∈ LIST, False otherwise.

sum :: [a] -> a

sum LIST Returns the summation of all elements of then list.

(++) :: [a] -> [a] -> [a]

LIST 1 ++ LIST 2 Concatenates two lists of the same type.

(:) :: a -> [a] -> [a]

ITEM ++ LIST 2 Appends a single element to the front of the list.

2.5.3 Strings

Strings are just a list of characters. Therefore, we can concatenate strings and perform list operations:

str :: String

str = "some"

other_str :: String

other_str = " string"

combined_str :: String

combined_str = str ++ other_string

will return "some string". Moreover,

"same" == [’s’, ’a’, ’m’, ’e’]

will return True

1(ai, bi) where ai ∈ LIST 1, bi ∈ LIST 2, 0 ≤ i ≤ (min (length LIST 1) (length LIST 2))
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2.6 List Processing

2.6.1 Creating Lists (Concatenation and Cons)

Lists can be created directly or indirectly via concatenation or consing:

Direct Creation

some_list = [1, 2, 3]

Concatenation

some_list = [1, 2, 3]

new_list = some_list ++ [4, 5, 6]

Here, new list is [1, 2, 3, 4, 5, 6]

Consing

some_list = [1, 2, 3]

new_list = 0 : some_list

Here, new list is [0, 1, 2, 3]

2.6.2 Ranges

Ranges are inclusive from both sides. By default, they are incremented by 1.

Incremented by 1

one_to_ten = [1..10]

Here, one to ten is [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Incremented by X (= 2)

odds = [1, 3..10]

Here, odds is [1, 3, 5, 7, 9]

Infinite Lists

infty = [1..]

Here, infty is [1, 2, ...]

Cyclic Lists

cyclic = cycle [1, 2, 3]

Here, cyclic is [1, 2, 3, 1, 2, 3, ...]

2.6.3 List Comprehensions

List comprehensions create lists from one (or more) existing lists. They have a similar syntax to
set-builder notation in Mathematics. A list comprehension has the following:2

(i) Generators: One or more input list(s)

(ii) Guards: Filters or conditions on the generators

(iii) Transformation: Applied to inputs (that satisfy the guard clauses) before adding them to the
output list

2See HW for more examples
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Example with Numbers

squares = [x^2 | x <- [1..3]

Here, squares is [1, 4, 9]

Example with Strings

nouns = ["party","exam","studying"]

adjs = ["lit","brutal","chill"]

combos = [adj ++ " " ++ noun | adj <- adjs, noun <- nouns]

Here, combos is ["lit party", "brutal exam", "chill studying"]

2.7 Control Flow

2.7.1 if then else

Haskell has standard if then else logic. However, note that in Haskell, an if must be closed with
an else. The syntax is as follows:

some_function =

if *condition* then

*statements*

else

*statements*

2.7.2 Guard Clauses (|)

Guard clauses are similar to switch cases. Note that they don’t require an = after the function name.
Additionally, otherwise can be replaced with . The syntax is as follows:

some_function

| *condition* = *statements*

| *other condition* = * statements*

...

| otherwise = *statements*

2.8 Pattern Matching

In the following subsections, we discuss different ways to pattern match. Note that in all of them,
we can replace a parameter with , which indicates that we will not use it and therefore it does not
matter.

2.8.1 Constants

To pattern match functions with constants, we define multiple versions of the same functions that all
have the same number and types of arguments. Then, we define unique parameters. Note that order
matters. Haskell will try to match top to bottom. The syntax is as follows:

multiply :: Int -> Int -> Int

multiply 10 b =

10 * b

multiply a 10 =

a * 10

multiply a b =

a * b
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2.8.2 Tuples

Pattern matching with tuples is similar, but we can decompose the tuple. The syntax is as follows:

exp :: (Int, Int) -> Int

exp (_, 0) = 1

exp (a, b) = a ^ b

2.8.3 Lists

Pattern matching lists are similar to pattern matching tuples. Note that we can decompose a list
multiple different ways:

(i) (x:xs) where x is the head and xs is the rest of the list (excluding x).

(ii) x:...:xs) where ... represents the second to ith element of a list.

(iii) [a, b, c] where a, b, c correspond to the first, second, and third elements of the list respec-
tively.

2.9 Local Bindings (let and where)

To create temporary variables, we use let and where. Note that we can create (nested) helper functions
using these keywords. The syntax is as follows:

2.9.1 let

some_function arg =

let

x = 10 + arg

*statements*

in

if x == 10 then

*something*

else

*something else*

2.9.2 where

some_function arg =

if x == 10 then

*something*

else

*something else*

where

x = 10 + arg

*statements*

2.10 Type Annotations

Functions have optional type declarations that take the form
name :: type -> ... -> return type where type -> ... -> are parameter types. Type vari-
ables are denoted by any lowercase variable name in place of type and represent any type.
Note: Type annotations of the form
name :: type -> (type -> ... -> return type) -> ... -> return type indicate that the func-
tion takes in another function (type -> ... -> return type) as a parameter.
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2.11 Functions

Functions are left-associative by default. That is,
a b c ⇐⇒ ((a b) c). Additionally, they get called before operators. Below are equivalences
between mathematical functions and Haskell’s function-calling syntax

f(x) ⇐⇒ f x

f(x, y) ⇐⇒ f x y

f(g(x)) ⇐⇒ f (g x)

f(x, g(y)) ⇐⇒ f x (g y)

f(x)g(y) ⇐⇒ (f x) * (g y) ⇐⇒ f x * g y

2.11.1 First Class/Higher Order Functions

First class functions are treated like data. That is, they can be:

(i) Stored in variables

(ii) Passed as arguments to other functions

(iii) Returned as values by a function

(iv) Stored in data structures

Higher order functions are functions that accept another function as an argument or return another
function as its return value.

Functions as Arguments

Int -> (Int -> Int) -> Int indicates a function that takes in an Int and a function that takes
in and returns an Int and returns an Int.

Returning a function

Int -> (Int -> Int) indicates a function that takes in an Int and returns a function that takes in
an Int and returns an Int.

2.12 Map, Filter, Reduce

map, filter, reduce are a set of powerful higher-order functions:

map :: (a -> b) -> [a] -> [b]

map A (one-to-one) transformation on a list

filter :: (a -> Bool) -> [a] -> [b]

filter Filter a list via a predicate function

foldl :: (a -> b -> a) -> a -> [b] -> a

foldr :: (a -> b -> b) -> b -> [a] -> b

reduce Collapse a list into a single output value
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2.12.1 map

To implement map, we do

map :: (a -> b) -> [a] -> [b]

map func [] = []

map func (x:xs) =

(func x) : (map func xs)

An example of map:

cube :: Double -> Double

cube x = x^3

mapped = map cube [1, 2, 3]

Here, mapped is [1, 8, 27]

2.12.2 filter

To implement filter, we do

filter :: (a -> Bool) -> [a] -> [a]

filter predicate [] = []

filter predicate (x:xs) =

| (predicate x) = x : (filter predicate xs)

| otherwise = filter predicate xs

An example of filter:

even :: Int -> Bool

even n =

n ‘mod‘ 2 == 0

filtered = filter even [1, 2, 3, 4]

Here, filtered is [2, 4]

2.12.3 reduce

There are two ways to reduce: foldl, foldr to force associativity of functions. foldl is left-
associative; that is, foldl calls f(f...f(accum, x1)..., xn) whereas foldr is right-associative;
that is, foldr calls f(x1, f(x2, ... f(xn, accum)...)) To implement foldl, we do:

foldl :: (a -> b -> a) -> a -> [b] -> a

foldl func accum [] = accum

foldl f accum (x:xs) =

foldl f new_accum xs

where new_accum = (f accum x)

To implement foldr, we do:

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr func accum [] = accum

foldr func accum (x:xs) =

func x (foldr func accum xs)

An example of foldl:

sub :: Int -> Int -> Int

sub x y = y -x

left = foldl sub 100 [10, 20]

right = foldr sub 100 [10, 20]

Here, left is 110
Here, right is -90

11



2.13 Lambda Functions

A lambda function is a function without a name attached to it. They are most often thought of as
throwaway functions (e.g. cube x = x ^3 ⇐⇒ \x -> x ^3).

2.13.1 Defining Lambdas

To define a lambda, we do

\param, param, ..., param -> expression

2.14 Closures

A closure is a combination of a lambda expression and all captured variables. For example, consider

slope_int m b = (\x -> m * x + b)

two_x_plus_one = slope_intercept 2 1

result = two_x_plus_one 9

Here, result is 19. When we define two x plus one, it is assigned (\x -> 2 * x + b) Therefore,
calling two x plus one 9 passes in 9 to x, which then evaluates the lambda expression \(x = 9) ->

2 * (x = 9) + 1 =⇒ 19, hence, result is 19.

A closure captures all free variables and its lambda’s bounded parameters. That is, m, b are free
while x is bounded to the lambda expression (from the example above). Both of these make up its
closure.

More generally, a closure consists of two things:

(i) A function of 0 or more arguments that we wish to run at some point in the future.

(ii) A list of free variables and their values that we captured at the time the closure was created.

2.15 Currying

Currying is the process of transforming a single function with multiple parameters into multiple func-
tions with a single parameter.3 For example,

f :: Int -> Int -> Int -> Int

f(x, y, z) = x + y * z

f :: Int -> (Int -> (Int -> Int))

f = \x -> (\y -> (\z-> (x + y * z)))

f :: Int -> Int -> Int -> Int

f = \x -> \y -> \z -> x + y * z

All three functions behave identically. Note that currying is right-associative. Currying is used for
partial function application.

2.16 Partial Function Application

Parital function application fixes one or more parameters of a function. For example, consider:

mult = \x -> (\y -> (\z -> x * y * z))

f1 = mult 2

f2 = f1 3

result = f2 5

3Haskell curries functions implicitly
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Here, result is 5. f1 is defined as
\(x = 2) -> (\y -> (\z -> (x = 2) * y * z

and f2 is defined as
\(x = 2) -> (\(y = 3) -> (\z -> (x = 2) * (y = 3) * z.
So, when we call f2 5, we get
\(x = 2) -> (\(y = 3) -> (\(z = 5) -> (x = 2) * (y = 3) * (z = 5) =⇒ 30, hence, result
is 30.

2.17 Algebraic Data Types/Immutable Data Structures

An ADT is a user-defined data type that can have multiple fields (similar to C++ enum). Note that
all type names must be capitalized. For example,

data Drink = Water | Coke | Redbull

data Veggie = Cucumber | Lettuce | Tomato

data Protein = Eggs | Beef | Chicken | Beans

data Meal =

Breakfast Drink Protein |

Lunch Drink Protein Veggie |

Dinner Drink Protein Protein Veggie |

Fasting

meal = Breakfast Redbull Eggs

Here, meal is a Meal data type with values Redbull and Eggs for Drink and Protein respectively.

Note that Algebraic Data Type fields are positional, and the pipe operator | distinguishes variants.

3 Scripting (Python)

Python is a dynamically typed scripting language that executes statements top-down (excluding control
flow).

3.1 Program Execution

A main function in Python is not necessary, though you can specify one by doing

if __name__ == "__main__":

main()

Additionally, identifiers in Python are function-scoped, meaning when created, identifiers persist until
the end of the function.

3.2 Classes

In Python, the self keyword is explicit. By default, all attributes are public. To make them private,
we do var and to make them protected, we do var.

Destructors ( del ()) are rarely used in Python since Python has automatic garbage collection.

3.3 Objects

In Python, all variables are object references (similar to pointers); that is, everything is allocated on
the heap. Some objects include:

(i) Strings: Immutable

(ii) Lists: Mutable, but assignment (=) creates a new list

(iii) Tuples: Immutable

To get the object id of an object, we do id(var).
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3.4 Parameter Passing

In Python, since everything is an object reference, we also pass everything by object reference.

3.5 List/Set/Dictionary Comprehension

List and set/dictionary comprehensions have the same syntax, but are wrapped in [] and {} respec-
tively. Examples are below:

input = [1, 2, 3, 4]

list_result = [x * 2 for x in input if x % 2 == 0]

s = "David’s dirty dog drank dirty water down by the dam"

set_result = {w for w in s.split() if w[0] == ’d’}

dict_result = {w:len(w) for w in s.split()}

Here, list result is [4, 8]

set result is {’drank’, ’dam’, ’dirty’, ’down’, ’dog’},
dict result is {"David’s": 7, ’dirty’: 5, ’dog’: 3, ’drank’: 5, ’water’: 5, ’down’:

4, ’by’: 2, ’the’: 3, ’dam’: 3}

4 Data

This section covers how languages internally manage data (including types, variables, and values).

4.1 Variables and Values

A variable is a symbolic name associated with a storage location that contains either a value or a
pointer (to a value). For example, in x = 5, x is a variable while 5 is the value. A variable has:

(i) Name: Variables most often have a name (identifier)

(ii) Type: A variable may or may not have a type associated with it

(iii) Value A variable stores a value (and the value’s type)

(iv) Binding: How a variable is connected to its (current) value

(v) Storage: Memory location associated with a variable

(vi) Scope: Where a variable is accessible

(vii) Mutability: Can the variable’s value be changed?

A value is a piece of data with a type that is referred to by the variable or computed in an expression.
A value has:

(i) Type: A variable may or may not have a type associated with it

(ii) Value A variable stores a value (and the value’s type)

(iii) Storage: Memory location associated with a variable

(iv) Lifetime: The longevity of the value

(v) Mutability: Can the variable’s value be changed?
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4.2 Types

Variables need not be typed, but values must have a type associated with them. We can infer about
a value (given its type):

(i) The set of legal values

(ii) The set of valid operations

(iii) Memory requirements

(iv) How we interpret bytes stored in RAM

(v) How values are converted between types

Primitive types include:

(i) Integer

(ii) Float

(iii) Char

(iv) Enum

(v) Boolean

(vi) Pointer

Composite types include:

(i) String

(ii) Tuple

(iii) Union

(iv) Array

(v) Container

(vi) Struct

Other types include:

(i) Generics/Templates

(ii) Function

(iii) Boxed (Only data member is a primitive)

4.3 Static and Dynamic Typing

Languages are either statically, dynamically typed.

4.3.1 Static Typing

A type checker checks operations and types at compile time. Statically typed languages need not be
explicitly typed (like C++: e.g. Haskell is statically typed but uses type inferenced).

Note: Statically typed languages must have a fixed type bound to each variable at the time of
definition.

Statically typed languages are inherently conservative; that is, they may disallow valid programs
that don’t violate typing rules.
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Pros

(i) Produces faster run-time code

(ii) Earlier type-related bug detection

(iii) No custom type checking

Cons

(i) Conservative (and therefore may not compile even when the program is correct)

(ii) Slower compile-time since it has to type check

4.3.2 Dynamic Typing

A dynamically typed language will check the type of a variable as they are called/referenced. Types
are associated with a variable’s value, not the variable itself. Additionally, they don’t require explicit
type annotations for variables.

Note: A type tag: All values have embedded types.

Pros

(i) Increased flexibility

(ii) Easier to implement generics that operate on different types of data

(iii) Simpler code (fewer type annotations)

(iv) Faster prototyping

Cons

(i) We detect errors much later

(ii) Slower run-time (runtime checking)

(iii) Requires more testing

(iv) No safety guarantees

Note: Downcasting (in C++) allows for runtime checking in an otherwise statically typed language

4.3.3 Duck Typing

Duck typing is a consequence of dynamic typing. If an object has the desired function name, the
function will be called. (See HW for examples)

Note: Duck typing can be done (to an extent) in statically typed languages via templates (in C++).

4.3.4 Gradual Typing

Gradual typing is a paradigm that allows for some variables to be statically typed and others dynam-
ically typed.

4.4 Strong and Weak Typing

Languages can be either weakly, strongly typed.
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4.4.1 Strong Typing

A strongly typed language guarantees that we never get undefined behavior at runtime due to type
issues. This implies that there is no possibility of an unchecked runtime type error. The minimum
requirements to be strongly typed are:

(i) The language is type-safe: Prevent operations on a variable if it’s incompatible.

(ii) The language is memory-safe: Prevents invalid memory access, has bounds checking, no dangling
pointers.

These can be enforced either statically or dynamically. To implement strong typing, we need to

(i) Validate before evaluation

(ii) Check all conversions

(iii) Assign all pointers to either null or a valid object

As a consequence, we have that strongly typed =⇒ memory safe.

4.4.2 Weak Typing

A weakly typed languages are generally not type-safe (may not detect type errors) nor memory safe
(may allow invalid memory access). Therefore, undefined behavior is allowed.4

4.5 Conversions, Casts, Coercion

4.5.1 Type Relationships

We say that Tsub is a subtype of Tsuper
5 if and only if:

(i) Tsub ⊆ Tsuper

(ii) All operations (e.g. +, -, *, /) that work in Tsuper also work in Tsub.

4.5.2 Conversions

Values will get copied from TA → TB . Conversions will occupy a new memory location with a different
bit encoding and will now have TB . Conversions most often happen between primitives (e.g. float →
int).

4.5.3 Casts

Values do not get copied, but rather treats the value of TA as if it were of TB ; that is, no conversion
takes place. Casts are typically used with objects.

4.5.4 Widening and Narrowing

A conversion/cast can either be widening or narrowing.

• A conversion/cast is said to widen if Tsub → Tsuper (e.g. short → long).

• A conversion/cast is said to narrow if Tsuper → Tsub or if TA, TB are not related (e.g. int →
string, float → int).

4.5.5 Explicit and Implicit

A conversion/cast can either be explicit or implicit.

• An explicit conversion/cast tells the compiler to delay type checking to runtime rather than
compile time.

• An implicit conversion (coercion)/cast do not require explicit syntax.

4ASIDE: We are moving towards strong and statically typed languages.
5Note that Tsub is a subtype of Tsuper ⇐⇒ Tsuper is a supertype of Tsub
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