
Relation: consists of a set of tuples (records). Each tuple is a row and has n attributes or columns. Each tuple contains
the exact same attributes in the same order.
Superkey: a set of k ≤ n attributes that uniquely identifies a tuple. There are at most 2n− 1 superkeys for an n-attribute
relation.
Candidate Key: is a minimal superkey s.t. no subset of its attributes form a superkey itself. A candidate key may be
null.
Primay Key: is a candidate key chosen by the DB designer to enforce uniqueness based on use case. A primary key may
not be null. If a primary key is composite, no component can be null
Foreign Key: in S points to a primary key in R. FK’s need not be unique in S, but must be unique (by def.) in R. FK’s
are primarily used for referential integrity. Further, the FK ∈ S need not have the same name as the PK ∈ R.

Selection: σψ(R) = {t ∈ R : ψ(t)}. σψ(R) ≈ SELECT * FROM R WHERE ψ(t). It filters on tuples using: =, ̸=, <,>,≤,≥
,¬,∨,∧.
Projection: Πai(R) = {t[ai] : t ∈ R, i ≤ n}. Π ≈ SELECT a1, . . . , an FROM R. Also, Πf(ai)→a′ where f is any reasonable
function.
Cartesian Product: R× S = {(r, s) : r ∈ R, s ∈ S}. They are very bad and inefficient.
Natural Join: R ▷◁ S = ΠR∪S(σR.k=S.k(R × S)) = {(r, s) : r ∈ R, s ∈ S, r[k] = s[k]}. Only to be used in relational
algebra.
Natural Join Edge Cases: If k = ∅, R ▷◁ S = R× S. If ∀r ∈ R, s ∈ S, r[k] ̸= s[k], R ▷◁ S = ∅.
Join Key: is the set of k ≤ n attributes that we join R,S on. All conditions are equality =⇒ equijoin. Otherwise,
non-equijoin.
Theta Join: R ▷◁θ S = σθ(R× S) = {(r, s) : r ∈ R, s ∈ S, θ((r, s))}. Name clash → alias. We choose the join key.
Inner Join: Include all rows that satisfy θ((r, s)). Throw out all rows that don’t satisfy θ((r, s)).
Aggregation: groupγf(ai)(R) where f is an aggregation function. Some include SUM, AVG, MIN, MAX, DISTINCT-COUNT.
Rename: ρS(R) renames a relation R→ S. ρa/b(R) renames an attribute a→ b ∈ R. Usually used in rhoS(R)×R.
Union: R ∪ S = {r1, . . . , r|R|, s1, . . . , s|S| : ri ∈ R, sj ∈ S}. R,S must have the same set of attributes for this to work.
Set Difference: R− S = {t : t ∈ R, t ̸∈ S}. Note: Division ÷ is not implemented in SQL.
Intersection: R∩S = {t : t ∈ R,S}. R,S must have the same set of attributes for this to work. Note: R∩S = R−(R−S).
Order of Operations: σ,Π, ρ→ ×, ▷◁→ ∩ → ∪,−.

ENUM: Order of defined when type is constructed. Values are case sensitive, whitespace matters. Can: add, rename values.
Cannot: delete, reorder values. 4 bytes.
Create Enum/Table:
CREATE TYPE enum_name AS ENUM (’value_1’, ..., ’value_n’);

CREATE TABLE table_name (

column_1 type OPTIONS,

...

column_n type OPTIONS

);
where type is a data type and OPTIONS can be none or more of: NOT NULL, DEFAULT [DEFAULT VALUE], UNIQUE, PRIMARY

KEY, FOREIGN KEY REFERENCES other table(other table ukey) ON DELETE/UPDATE CASCADE/RESTRICT/SET NULL. We
can set the PK/FK inline or at the bottom using PRIMARY KEY (column i) and FOREIGN KEY (column j) REFERENCES

other table(other table ukey).
Changing Schema: Don’t lmao. Use extra (if you were smart enough to think ahead) or create another table with a
join key.
Alter Table: add/drop columns, constraints (e.g. PK/FK), rename tables/columns, change data types of columns.
ALTER TABLE table_name

DROP col_i, -- delete column

ALTER COLUMN col_j TYPE new_type, -- changes type of col_j to new_type

ADD col_k type, -- adds col_k

DROP CONSTRAINT table_name_pkey, -- drops PK constraint

ADD PRIMARY KEY col_l, -- adds PK constraint to col_l

RENAME COLUMN col_m TO new_col_name, -- renames col_m to new_col_name

RENAME TO new_table_name; -- renames table_name to new_table_name
Drop, Truncate, Delete: DROP [TABLE/SCHEMA/DATABASE] table name/schema name/db name; deletes the table/schema/db.
If inside a script, use IF EXISTS. TRUNCATE table name will delete all of the data inside table name, but will preserve the
schema. This is the same as DELETE FROM table name WHERE 1=1.
Select: SELECT col 1, ..., col n FROM table name WHERE condition;.
Where: pre-filters rows in a table. It acts on values in columns and transformation functions applied on rows indepen-
dently (NOT aggregation functions). Note: WHERE c BETWEEN x AND y ≃ WHERE c <= y AND c >= x.
Query Order: SELECT → FROM → JOIN → ON(s) → WHERE → GROUP BY → HAVING → ORDER BY → LIMIT → OFFSET

Execution Order: FROM → ON → JOIN → WHERE → GROUP BY → HAVING → SELECT → DISTINCT → ORDER BY

Aggregation/Group By: Aggregations over a relation does not need a GROUP BY. Aggregations over groups requires a GROUP BY. For
example: SELECT AVG(one) AS avg FROM table name; and SELECT one, AVG(two) AS avg FROM table name GROUP BY one;

Having: post-filters result of an aggregation. SELECT one AVG(two) AS avg FROM r name GROUP BY one HAVING AVG(two) < 100;

Outer Join: keep rows that don’t have a match, replacing the “other side” as null. We use LEFT/RIGHT/FULL OUTER JOIN where OUTER
is optional.
Left Join: keeps all rows in the LHS of the join.
Right Join: keeps all rows in the RHS of the join.
Full Join: keeps rows from both sides of the join.
Coalesce: COALESCE(expr, replacement value) where expr may return null. It can take multiple arguments and returns the first
that is not null.

Nested Query/Subquery: Innermost query gets evaluated first.
Derived Table Subquery: returns a table.
SELECT uid, last, first, mi, scores.career, midterm, (midterm - mean) / sd AS z_score

FROM (

SELECT career, AVG(midterm) AS mean, STDDEV(midterm) AS sd

FROM midterm_scores

GROUP BY career

) aggregated

JOIN midterm_scores scores

ON scores.career = aggregated.career;

Scalar Subquery: returns a scalar.
SELECT uid, last, first, mi, midterm

FROM midterm_scores

WHERE midterm > (

SELECT AVG(midterm) + 0.5 * STDDEV(midterm)

FROM midterm_scores

);

SELECT uid, last, first, mi, midterm,

(midterm - (SELECT AVG(midterm) FROM midterm_scores))

/ (SELECT STDDEV(midterm) FROM midterm_scores)

AS zscore

FROM midterm_scores;

Filter Subquery: using IN/NOT IN is a semijoin if we project out all of the columns from the flights table.
SELECT flights.*

FROM flights

WHERE flights.tail IN (

SELECT tail FROM airtran_aircraft

);

Correlated Subquery: They suck, lol. This reexecutes the subquery for every row in the outer query.
SELECT uid, last, first, mi, midterm

FROM midterm_scores m1

WHERE midterm > (

SELECT AVG(midterm) + 0.5 * STDDEV(midterm)

FROM midterm_scores m2

WHERE m1.career = m2.career

);

Subqueries v. Joins: Subqueries are typically faster. Joins are slow so we want to filter as much as possible before joining.
Adding Rows: INSERT INTO table name VALUES (’val11’, ..., ’val1n’), (’val21’, ..., ’val2n’),...; requires us to know
the schema. Order matters, and all values must be specified. Another way is:
INSERT INTO table name (col1 name, ..., colk name) VALUES (’val11’, ..., ’val1k’), (’val21’, ..., ’val2k’), ...;

We just specify the names of the columns we insert into. Order doesn’t matter but we need to be consistent.
Modifying Rows: UPDATE table name SET column name = new value WHERE condition;

Check Constraint: CONSTRAINT Constraint Name CHECK (condition); is put at the end of a CREATE TABLE. They can be added using
ALTER TABLE. We can only use check constraints on rows.
Casting: Cast with column name::new type.
NullIf: NULLIF(var, replacement). If var is null, replace with replacement.
Control Flow: Case and Searched Case statements:

SELECT ...,

CASE column_name

WHEN condition_1 THEN result_1

...

WHEN condition_n THEN result_n

ELSE default_result

END AS new_column_name

FROM midterm_scores;

SELECT ...,

CASE

WHEN column_name = condition_1 THEN result_1

...

WHEN column_name = condition_n THEN result_n

ELSE default_result

END AS new_column_name

FROM midterm_scores;

SQL Injection: If we don’t use a prepared query, consider SELECT uid FROM bruinbase WHERE uid=’{}’. In place of “{}”, we can
inject ’; DROP DATABASE students; -- to drop the students database.
Caching: Caching is fast and decreases the workload on the DB. We can either talk to the cache and DB directly or have a broker/proxy
talk to the DB and cache.
Logging: is important, so do it lmao. But, minimize the amount of private data.

2

Salt and Pepper: A string (salt) is randomly chosen to be affixed to the data before it is hashed. This hash and salt are stored. Peppering
is similar, but is stored in a separate table. This makes it more difficult to steal than salting. Peppering is not widely implemented.
Normalization: Normalization is the process of refactoring tables to reduce redundancy in a relation. It involves splitting a table with
redundant data into two or more non-redundant tables. Tables without redundancies are called normalized. When there are redundan-
cies, we can decompose the table using functional dependencies.
Problems with Deormalized Tables: Redundancy, data integrity issues (update/insert), delay in creating new records. Normalized
tables allow for separation of concerns.
Functional Dependency: X → Y : X functionally determines Y if every x ∈ X is associated with exactly one y ∈ Y . If there exists
X → Y , we can decompose the table into two: R(X,Y) and R(X,Z) where Z := R \ Y . For example:
X Y A B
α β σ π
α β γ ∆
γ η π ∆

Here, X → Y since α 7→ β, γ 7→ η, so we can decompose the relation into R1 :=

X Y
α β
α β
γ η

and R2 :=

X A B
α σ π
α γ ∆
γ π ∆

Functional Dependency Properties (Armstrong’s Axioms [1-3] and Corollaries [4-7]): α, β, γ ∈ r(R).
(1) Reflexivity: If β ⊆ α, then α→ β. Ex: A ⊆ A =⇒ A→ A,A ⊆ AB =⇒ AB → A.
(2) Augmentation: If α→ β, then αγ → βγ. Ex: {uid} → {name} =⇒ {uid,major} → {name,major}.
(3) Transitivity: If α→ β and β → γ, then α→ γ. Ex: {uid} → {room #}, {room #} → {room type} =⇒ {uid} → {room type}.
(4) Union: If α→ β and α→ γ, then α→ βγ. Pf. (α→ γ =⇒ αα→ αγ ⇐⇒ α→ αγ), (α→ β =⇒ αγ → βγ) =⇒ α→ αγ → βγ.
(5) Composition: If α→ β, γ → ∆, then αγ → β∆.
(6) Decomposition: If α→ βγ, then α→ β and α→ γ.
(7) Pseudotransitivity: If α→ beta, ∆β → γ, then ∆α→ γ.

Canonical Cover: Fc ⊆ F+ is the basis set of the set of all functional dependencies F+. It is not unique.
Finding Fc: (1) Decompose RHS: (X → Y ZA becomes X → Y,X → Z,X → A). (2) Remove extraneous attributes: (AB → C,B → C,
AB → C is extraneous). (3) Remove trivial, duplicate, inferred FD’s (by transitivity). (4) Union and repeat until set doesn’t change.
Example: Given {B → D,C → D,AB → C,B → E,C → F,A→ BCDEF,AB → D,AB → F},
After (1), we get {A→ B,A→ C,A→ D,A→ E,A→ F,B → D,C → D,AB → C,B → E,C → F,AB → D,AB → F}.
After (2), we get {A→ B,A→ C,A→ D,A→ E,A→ F,B → D,C → D,B → E,C → F}.
After (3), we get {A→ B,A→ C,B → D,C → D,B → E,C → F}.
After (4), we get Fc := {A→ BC,B → DE,C → DF}. Then we have R1(A,B,C), R2(B,D,E), R3(C,D, F).

Normal Forms: There are 8 normal forms, but we discuss 1NF, 2NF, 3NF, and BCNF (3.5NF).
First Normal Form (1NF): Atomic attributes (flat, no nesting/collections), no repeated groups, there is a unique key, no null values.
Second Normal Form (2NF): R is 1NF and does not contain any composite keys. More generally, R is 2NF ⇐⇒ ∀a ∈ R, either (1)
a ∈ CK or (2) a ∈ R depends on an entire key; i.e. it is not partially dependent on any composite candidate key.
Third Normal Form (3NF): All non-prime a ∈ R depend directly on a CK (no transitivity); i.e. if all a ∈ R are part of a candidate
key, R is 3NF. Zaniolo’s 3NF: ∀f ∈ F , at least one is true: (1) a→ β is trivial. (2) α ∈ R is SK. (3) β ∈ CK.
BCNF: ∀f : α→ β ∈ F , at least one is true: (1) f is trivial (β ⊆ α) or (2) α is a SK for R.
Note - BCNF: As Normal Form ↑, Redundancy ↓, but Data Integrity may also ↓.
Note - BCNF: BCNF removes all redundancy due to functional dependencies only. There may be redundancy due to other causes.

Losslessness: A decomposition is lossless if R1 ▷◁ R2 = R. We can also check (1) R1 ∪ R2 = R, (2) R1 ∩ R2 ̸= ∅, and (3) (R1 ∩ R2)
+

forms an SK for either R1 or R2.
Note - Losslessness: 1NF, 2NF, 3NF, BCNF guarantee losslessness.
Attribute Closure: α+ is the set of attributes inferred by α. If, α+ = R, then α is an SK.

Example - Lossless: R(A,B,C,D,E,G) with R1(A,B,C,G), R2(A,D,E), F = {A→ B,A→ C,CD → E,B → D,E → A} is lossless.
(1) R1 ∪ R2 = {A,B,C,D,E,G} = R. (2) R1 ∩ R2 = {A} ≠ ∅. (3) (R1 ∩ R2)

+ = {A}+ = ABCDE is SK for R1 so R1 ∩ R2 → R2.
Example - Not 3NF: F = {AB → CD,C → D}, CK = AB. Then, AB → C,AB → D,C → D. AB → D is transitive so R ̸∈ 3NF.
Normalized, we get R1(A,B,C), R2(C,D).
Example - Not BCNF: R(A,B,C,D,E), F = {A → BC,C → B,D → E,E → D}. A → BC: A+ = ABC ̸= ABCDE. (i) not trivial
(ii) A is not an SK. R ̸∈ BCNF. Normalized, we get R1(A,B,C), R2(A,D,E). which is BCNF by inspection.
Example - Not BCNF: R(A,B,C), F = {AB → C,C → B}. AB → C (✓): (AB)+ = ABC = R (i) not trivial (ii) AB is SK. C → B
(x): (i) not trivial (ii) C not SK. R ̸∈ BCNF. Normalized, we get R1(B,C), R2(A,C).
Example- 3NF, Not BCNF: R(A,B,C), CK = AB, F = {AB → C,C → B}. AB → C (✓): (i) not trivial (ii) AB is SK. C → B
(x): (i) not trivial (ii) C not SK. R ̸∈ BCNF. R ∈ 3NF since C depends on AB.

BCNF Decomposition Algorithm:
for any Ri in the schema

if (α→ β holds on Ri and

α→ β is non -trivial and

α is not a superkey), then

Decompose Ri into Ri1(α
+) and Ri2(α ∪ (Ri − α+))

// α is the common attriute(s)

repeat until no more decompositions are necessary

Example - BCNF Decomposition: R(A,B,C), F = {A→ B,B → C}. A+ = ABC. A→ B (✓): (i) not trivial (ii) A is SK. B → C
(x): (i) not trivial (ii) B not SK. R ̸∈ BCNF. Decomposing, we get R1(B,C), R2(A,B).
Example - BCNF Decomposition: R(A,B,C,D), F = {C → D,C → A,B → C}. B+ = BCDA = R. C → AD (x): (i) not trivial
(ii) C not SK. B → C (✓): (i) not trivial (ii) B is SK. R ̸∈ BCNF. Decomposing, we get R1(A,C,D), R2(B,C).

3

Functional Dependencies as Constraints: By definition, a functional dependency is a constraint. When designing DB, we want
BCNF/3NF, losslessness, and dependency preservation.
Dependency Preservation: 1NF, 2NF, 3NF guarantee dependency preservation.

Query Examples

SELECT l.departure_time, l.tail, l.flight,

SUM(r.distance) AS miles

FROM (

SELECT departure_time, tail, a.flight, distance

FROM equipment_flight a

JOIN flights b

ON a.flight = b.flight

) l -- earlier flight

JOIN (

SELECT departure_time, tail, a.flight, distance

FROM equipment_flight a

JOIN flights b

ON a.flight = b.flight

) r -- later flight

ON l.tail = r.tail AND l.departure_time < r.departure_time

AND HOURDIFF(l.departure_time, r.departure_time) <= 12

WHERE DATE(l.departure_time) = CURDATE()

GROUP BY l.tail, l.departure_time, l.flight;

SELECT tail, COUNT(*) as total

FROM equipment_flight

WHERE DATE(departure_time) = YESTERDAY()

GROUP BY tai

HAVING COUNT(*) > 5;

Example - BCNF Decomposition: R(A,B,C,D,E,G), F = {A → B,A → C,C → E,B → D}. A+ = ABCDE, B+ = BD,
C+ = CE.
A→ BC (x): (i) not trivial (ii) A not SK.
C → E (x): (i) not trivial (ii) C not SK.
B → D (x): (i) not trivial (ii) B not SK.
R ̸∈ BCNF. Decomposing on C → E, we get R1(C,E), R2(A,B,C,D,G).
A→ BC (x): (i) not trivial (ii) A not SK.
B → D (x): (i) not trivial (ii) B not SK.
R2 ̸∈ BCNF. Decomposing on B → D, we get R1(C,E), R3(B,D), R4(A,B,C,G).
A→ BC (x): (i) not trivial (ii) A not SK.
R4 ̸∈ BCNF. Decomposing on A→ BC, we get R1(C,E), R3(B,D), R5(A,B,C), R6(A,G).

A B C
Mighty Mighty Bosstones The Impression That I Get ska
Hoku Perfect Day pop
The 1975 Somebody Else alt
beabadoobee Space Cadet alt
beabadoobee Care alt
Duran Duran Perfect Day nw
Dave Matthews Band Ants Marching rock
ABC Poison Arrow nw

F = {A → C,AB → C,BC → A}, Fc = {AB → C,BC → A}.
R is in 3NF since we have no non-prime attributes. AB,BC are
candidate keys since (AB)+ = (BC)+ = ABC.

Cross Join v. Full Join A Cross join is the cartesian product. A full join requires a join condition, matching on it but leaving null’s
whenever there is no match on the LHS or RHS.

Theory v. Practice: Relations must have a key, but tables need not. null’s not allowed in Theory, allowed in practice.
Example - Update w/ Subquery: UPDATE scores SET midterm = midterm + (SELECT 100 - MAX(midterm) FROM scores);

Example - Having:
SELECT major, AVG(gpa)::decimal(3, 2) AS average

FROM bruinbase

WHERE career = ’UG’

GROUP BY major

HAVING AVG(gpa) < 3.95

ORDER BY average DESC

LIMIT 2;
returns all majors that have an undergrad GPA of less than 3.95.

Sketching out a Query: FROM → WHERE → GROUP BY → HAVING → SELECT (AS) → ORDER BY → LIMIT

Example - Multiple Joins
SELECT instructor_name AS name, course_name AS course

FROM instructor l

JOIN course r

ON l.ID = r.ID

LEFT JOIN course_offering t

ON r.course = t.course;
we can join on attributes not in the SELECT.

4

Self Join: joins a table with itself. Typically used for graph traversals.
Example - Friend of a Friend: Given
id friend id

1 2
1 3
3 5
5 2
3 1

the joined relation is

l.id l.friend id r.id r.friend id

1 3 3 5
1 3 3 1
3 5 5 2
3 1 1 2

where FOAF is between l.id and r.friend id.

(1) Compute the cartesian product: R×R := ρl(R)×R.
(2) θ := l.friend id = r.id ∧ l.id ̸= r.friend id.
(3) Πl.id→id,r.friend id→foaf (σθ(R×R)).
Then the full expression is Πl.id→id,r.friend id→foaf (σl.friend id=r.id∧l.id̸=r.friend id(ρl(R)×R)).
The SQL for it is
SELECT DISTINCT l.id AS user, r.friend_id AS foaf

FROM friends l

JOIN friends r

ON l.friend_id = r.id AND l.id != r.friend_id;
Example - Left Join:
SELECT l.trip_id AS trip_id

l.time AS start_time

r.time AS end_time

FROM trip_start l

LEFT JOIN trip_end r

ON l.trip_id = r.trip_id;
will return all the rows in trip start but may have null’s for unmatched columns.
Example - Non-Equi Self Join as Window Function:
SELECT l.trans_id, l.customer_id, SUM(r.result) AS chargebacks

FROM purchase L

JOIN purchase R

ON l.customer_id = r.customer_id

AND l.transtime - r.transtime + 1 <= 5

AND r.transtime <= l.transtime

GROUP BY l.trans_id, l.customer_id

ORDER BY trans_id DESC;
returns the total number of chargebacks within a particular window of time.
Nested/Sub Queries:
(1) Construct derived tables in FROM or JOIN.
(2) Compute scalar subqueries in WHERE or HAVING.
(3) Set membership with IN/NOT IN (e.g. SELECT * FROM table WHERE r.foo IN (SELECT ...);).
(4) Testing for empty relations using EXISTS.
(5) Set comparison with ANY or ALL.
(6) Uniqueness using UNIQUE.
Constraints in Databases v. Applications: Rule of thumb: Business logic in the app, data integrity in the database.

Pros (Database):
(1) Purpose of DB is data integrity.
(2) Set syntax for checking constraints.
(3) Don’t need to trust the app developer.
(4) Changes to the app don’t break data integrity.
Cons (Database):
(1) Limited functionality.
(2) Less flexibility
(3) More CPU load due to checking constraints over CRUD.

Pros (Application):
(1) Constraints can be more complex with more sophisticated data
structures.
(2) Failures are easier to debug.
Cons (Application):
(1) We need to manually handle bad user input.
(2) Reimplement check constraints if stack changes.
(3) Not as fast (potentially).

RegEx: SELECT name FROM ta restaurant WHERE name LIKE ’% Lotus %’;
Example Queries:

SELECT city

FROM ta_restaurant l

JOIN ta_cuisine r

ON l.id = r.id

WHERE r.cuisine = ’Indian’

GROUP BY city

HAVING AVG(rating) > 4.2

ORDER BY AVG(rating);

SELECT origin, destination

FROM flights l

LEFT JOIN snacks r

ON l.flight = r.flight

WHERE snack IS NULL;

Relational Algebra Examples:
Πid,name(σbuilding=′Watson′(department) ▷◁ instructor). – id, name of each instructor in a dept. located in the Watson building.
Πcourse id(σsemester=′Spring′∧year=2009(section). – All course id’s of courses taught in Spring 2009.
Πname,salary(σsalary=max.salary(instructor × γMAX(salary)→max.salary(instructor))). – name, salary of instructors with the highest salary.

5

