
CS 143

Warren Kim



Contents

9 Functional Dependencies and Normalization 5
9.1 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

9.1.1 Functional Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
9.1.2 Properties of Functional Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
9.1.3 Canonical Cover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
9.1.4 Normal Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

10 Lecture 10 11
10.1 OnLine Transaction Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
10.2 OnLine Analytical Processing and Data Warehousing . . . . . . . . . . . . . . . . . . . . . . . 11

10.2.1 ETL Jobs in OLAP’s: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
10.2.2 Exploded Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
10.2.3 OLAP Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
10.2.4 Schemas in Data Warehouses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
10.2.5 DuckDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
10.2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

10.3 Data System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
10.3.1 Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
10.3.2 Multiple Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

10.4 Data Lakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
10.5 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

11 Lecture 11 17
11.1 Distributed Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

11.1.1 Distributed Filesystem Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
11.2 Big Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
11.3 MapReduce (in Hadoop) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

11.3.1 MapReduce Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
11.3.2 Infrastructure and Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

11.4 SQL in MapReduce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
11.4.1 Subqueries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
11.4.2 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

11.5 Apache Spark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
11.5.1 Spark vs. Hadoop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
11.5.2 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
11.5.3 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
11.5.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
11.5.5 Spark SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1



12 Lecture 12 22
12.1 (Unbounded) Streaming Data Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

12.1.1 Producer/Consumer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
12.1.2 Messsage Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
12.1.3 Data Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

12.2 Message Broker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
12.2.1 Unavailable Consumer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
12.2.2 Producer to Broker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
12.2.3 Broker to Consumer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
12.2.4 Unreliable Broker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
12.2.5 Consumers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

12.3 Stream Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
12.4 Aggregates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

12.4.1 Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
12.4.2 Stragglers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
12.4.3 Update Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

12.5 Special Aggregations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
12.5.1 Bloom Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
12.5.2 HyperLogLog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

13 Lecture 13 27
13.1 NoSQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

13.1.1 The CAP Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
13.1.2 Key-Value Stores (Redis) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
13.1.3 Columnar Database (Cassandra) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
13.1.4 Document Store (MongoDB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
13.1.5 Graph Database (Neo4j) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

14 Lecture 14 31
14.1 Disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

14.1.1 Disk Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
14.1.2 Disk Organization and Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

14.2 Records into Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
14.2.1 Fixed Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
14.2.2 Variable-sized Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
14.2.3 Records into Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

15 Lecture 15 33
15.1 Files to Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
15.2 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
15.3 Index Sequential Access Methods (ISAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

15.3.1 Primary/Clustering Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
15.3.2 Secondary/Non-Clustering Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

15.4 B-plus Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
15.4.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
15.4.2 Time and Space Complexities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
15.4.3 Disk I/O Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
15.4.4 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
15.4.5 Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
15.4.6 Indexes in SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

15.5 Hash Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
15.5.1 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
15.5.2 Deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
15.5.3 Bucket Overflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2



16 Lecture 16 36
16.1 Spatial Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

16.1.1 kd -Trees and Ball Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
16.2 Query Plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

16.2.1 Estimating Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
16.3 Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
16.4 Joins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

16.4.1 Nested-Loop Join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
16.4.2 Block Nested-Loop Join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
16.4.3 Indexed Nested-Loop Join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
16.4.4 Merge Join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
16.4.5 Hash Join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

16.5 Joins in Spark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
16.5.1 Broadcast Joins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

17 Lecture 17 41
17.1 Auto Commit and Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

17.1.1 ACID Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
17.1.2 BASE Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
17.1.3 Strict ACID Guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

17.2 Concurrency and Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
17.2.1 Isolation and Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
17.2.2 Serializability: Swapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
17.2.3 Serializability: Precedence Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

17.3 Transaction Isolation Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
17.3.1 Dirty Read/Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
17.3.2 Non-Repeatable/Fuzzy Reads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
17.3.3 Phantom Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

18 Lecture 18 51
18.1 Locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

18.1.1 Starvation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
18.1.2 Releasing Locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
18.1.3 Two-Phase Locking (2PL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
18.1.4 Deadlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
18.1.5 Lock Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
18.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

18.2 Transactions in NoSQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
18.2.1 Redis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
18.2.2 MongoDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
18.2.3 Neo4j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

19 Epilogue 55

3



Preface

Note: This set of notes covers weeks 5 through 10. This is because the midterm was limited to five cheat
sheets. I was not going to write notes for weeks 1 through 4 as well, especially since I wrote these notes two
days before the final.

Note: The Functional Dependencies and Normalization chapter is a summary of lectures 8 and 9.

Legend

Definition:

Any definitions will appear in a grey box like this one.

Example

Any examples will appear in a green box like this one.

Aside

Any asides will appear in a blue box like this one.

Theorem:

Any theorems will appear in a yellow box like this one.

4



Functional Dependencies and
Normalization

9.1 Normalization

Definition: Normalization

Normalization is the process of refactoring tables to reduce redundancy in a relation. It involves
splitting tables with redundant data into two or more norn-redundant tables.

Tables without redundancies are called “properly normalized”. When there are redundancies in a tables,
we can decompose them using functional dependencies.

9.1.1 Functional Dependencies

Definition: Functional Dependency

Given a relation R with sets of attributes X,Y , X → Y is true if and only if each value of X is
associated with exactly one value of Y .

We say “X functionally determines Y ”. Then, for all pairs of tuples t1, t2 ∈ R, if X → Y , then if
t1[X] = t2[X], then t1[Y ] = t2[Y ].

Example

Given the following, determine if B → C, C → A, and A → C.
A B C D
a1 b1 c1 d1
a1 b2 c1 d2
a2 b2 c2 d2
a2 b3 c2 d3
a3 b3 c2 d4

B ↛ C since b2 → c1, c2. C ↛ A since c2 → a2, a3. A → C by inspection.

The existence of a functional dependency implies that we can split the table up into two tables.

Example

If R(X,Y,A,B) and X → Y , then we have R1(X,Y ), R2(X,A,B).
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9.1.2 Properties of Functional Dependencies

Let α, β, γ be sets of attributes in a relation R. Then we have Armstrong’s Axioms:

→ Reflexivity: If β ⊆ α, then α → β.

→ Augmentation: If α → β, then αγ → βγ.

→ Transitivity: If α → β and β → γ, then α → γ.

From these, we have additional properties:

→ Union: If α → β and α → γ, then α → βγ.

→ Composition: If α → β, γ → ∆, then αγ → β∆.

→ Decomposition: If α → βγ, then α → β and α → γ.

→ Pseudotransitivity: If α → b, ∆β → γ, then ∆α → γ.

9.1.3 Canonical Cover

Definition: Canonical Cover

The canonical cover Fc ⊆ F+ is the basis set of the set of all functional dependencies F+. It is not
unique.

Finding the Canonical Cover: The algorithm to find the canonical cover is given below:

(1) Decompose RHS: (X → Y ZA becomes X → Y,X → Z,X → A).

(2) Remove extraneous attributes: (AB → C,B → C, AB → C is extraneous).

(3) Remove trivial, duplicate, inferred FD’s (by transitivity).

(4) Union and repeat until set doesn’t change.

Attribute Closure: α+ is the set of attributes inferred by α. If, α+ = R, then α is an SK.

9.1.4 Normal Forms

There are 8 normal forms, but we discuss 1NF, 2NF, 3NF, and BCNF (3.5NF).

First Normal Form (1NF): Atomic attributes (flat, no nesting/collections), no repeated groups, there
is a unique key, no null values.

Second Normal Form (2NF): R is 1NF and does not contain any composite keys. More generally, R
is 2NF ⇐⇒ ∀a ∈ R, either (1) a ∈ CK or (2) a ∈ R depends on an entire key; i.e. it is not partially
dependent on any composite candidate key.

Third Normal Form (3NF): All non-prime a ∈ R depend directly on a CK (no transitivity); i.e. if all
a ∈ R are part of a candidate key, R is 3NF.

Zaniolo’s 3NF: ∀f ∈ F , at least one is true: (1) a → β is trivial. (2) α ∈ R is SK. (3) β ∈ CK.

BCNF: ∀f : α → β ∈ F , at least one is true: (1) f is trivial (β ⊆ α) or (2) α is a SK for R.
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Note: As Normal Form ↑, Redundancy ↓, but Data Integrity may also ↓ in BCNF. Additionally, BCNF
removes all redundancy due to functional dependencies only. There may be redundancy due to other causes.

Definition: Losslessness

A decomposition is lossless if R1 ▷◁ R2 = R. We can also check

(1) R1 ∪R2 = R.

(2) R1 ∩R2 ̸= ∅.

(3) (R1 ∩R2)
+ forms an SK for either R1 or R2.

1NF, 2NF, 3NF, BCNF guarantee losslessness.

BCNF Decomposition Algorithm

for any Ri in the schema

if (α → β holds on Ri and

α → β is non -trivial and

α is not a superkey), then

Decompose Ri into Ri1(α
+) and Ri2(α ∪ (Ri − α+))

// α is the common attriute(s)

repeat until no more decompositions are necessary

Example

Determine if R is BCNF. If not, decompose it into BCNF.

R(A,B,C), F = {A → B,B → C}

Note that A+ = ABC. Then

→ A → B (✓): (i) not trivial (ii) A is SK.

→ B → C (x): (i) not trivial (ii) B not SK.

R ̸∈ BCNF. Decomposing, we get R1(B,C), R2(A,B).

Example

Determine if R is BCNF. If not, decompose it into BCNF.

R(A,B,C,D), F = {C → D,C → A,B → C}

Note that B+ = BCDA = R. Then

→ C → AD (x): (i) not trivial (ii) C not SK.

→ B → C (✓): (i) not trivial (ii) B is SK.

R ̸∈ BCNF. Decomposing, we get R1(A,C,D), R2(B,C).

Functional Dependencies as Constraints: By definition, a functional dependency is a constraint.
When designing DB, we want BCNF/3NF, losslessness, and dependency preservation.

Dependency Preservation: 1NF, 2NF, 3NF guarantee dependency preservation. BCNF does not.
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Example

Determine if R is in BCNF.

R(A,B,C,D,E,G), F = {A → B,A → C,C → E,B → D}

Note that A+ = ABCDE, B+ = BD, C+ = CE. By the union property, we have

F = {A → BC,C → E,B → D}

→ A → BC: (i) A → BC is not trivial. (ii) A is not a superkey. x

→ C → E: (i) C → E is not trivial. (ii) C is not a superkey. x

→ B → D: (i) B → D is not trivial. (ii) B is not a superkey. x

All three dependencies violate BCNF. Decomposing on B → D, we get

R1(A,B,C,E,G), R2(B,D)

Looking at R1:

→ A → BC: (i) A → BC is not trivial. (ii) A is not a superkey. x

→ C → E: (i) C → E is not trivial. (ii) C is not a superkey. x

Both dependencies violate BCNF. Decomposing on C → E, we get

R3(A,B,C,G), R4(C,E), R2(B,D)

Looking at R3:

→ A → BC: (i) A → BC is not trivial. (ii) A is not a superkey. x

A → BC violates BCNF. Decomposing on A → BC, we get

R5(A,B,C), R6(A,G), R4(C,E), R2(B,D)

Reindexing the decomposition, we get

R1(A,G), R2(C,E), R3(B,D), R4(A,B,C)

The rest of this page is intentionally left blank.
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Example

From the previous example, determine if the decomposition is dependency preserving.

Recall the following attribute closures:

A+ = ABCDE,B+ = BD,C+ = CE,D+ = D,E+ = E,G+ = G

B → D:
Iteration 1:

result = B

t = (B ∩R1)
+ ∩R1 = (B ∩AG)+ ∩AG = ∅ → result = B

t = (B ∩R2)
+ ∩R2 = (B ∩ CE)+ ∩ CE = ∅ → result = B

t = (B ∩R3)
+ ∩R2 = (B ∩BD)+ ∩BD = BD ∩BD = BD → result = BD ✓

short circuit

We derived D, so B → D is preserved.

C → E:
Iteration 1:

result = C

t = (C ∩R1)
+ ∩R1 = (C ∩AG)+ ∩AG = ∅ → result = C

t = (C ∩R2)
+ ∩R2 = (C ∩ CE)+ ∩ CE = CE ∩ CE = CE → result = CE ✓

short circuit

We derived E, so C → E is preserved.

A → BC:
Iteration 1:

result = A

t = (A ∩R1)
+ ∩R1 = (A ∩AG)+ ∩AG = ABCDE ∩AG = A → result = A

t = (A ∩R2)
+ ∩R2 = (A ∩ CE)+ ∩ CE = ∅ → result = A

t = (A ∩R3)
+ ∩R3 = (A ∩BD)+ ∩BD = ∅ → result = A

t = (A ∩R4)
+ ∩R4 = (A ∩ABC)+ ∩ABC = ABCDE ∩ABC = ABC → result = ABC ✓

short circuit

We derived BC, so A → BC is preserved.

Because every functional dependency was preserved, this decomposition is dependency preserving.

The rest of this page is intentionally left blank.
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Example

Given R(A,B,C,D,E,G) and the following decomposition: R1 = (A,B,C,G), R2 = (A,D,E) with
functional dependencies F = {A → B,A → C,CD → E,B → D,E → A}, the decomposition is
lossless if it satisfies the following:

1. R1 ∪R2 = R : R1 ∪R2 = (A,B,C,D,E,G) = R ✓

2. R1 ∩R2 ̸= ∅: R1 ∩R2 = (A) ̸= ∅ ✓

3. (R1∩R2)
+ forms a superkey for either R1 or R2: Looking at (R1∩R2)

+, we have A+ = ABCDE,
which forms a superkey for R2 = (A,D,E).
B ∈ A+ by A → B.
C ∈ A+ by A → C.
D ∈ A+ by A → B → D.
E ∈ A+ by A → C,A → B → D =⇒ A → CD → E. ✓

The decomposition is lossless.

Example

Given the following relation:

A B C D
Name Class Score Grade
Ted E. Bear CS111 65 B
Ted E. Bear CS143 78 B
Wile E. Coyote CS111 91 A
Joe Bruin CS118 31 F
Josie Bruin CS131 89 A

The candidate key in the context of the problem is AB. The functional dependencies are

→ AB → C, AB → D since AB is a superkey.

→ C → D since there is only one score/grade per class.

→ R is in 2NF if for every attribute in R, at least one of the following holds:

(1) it is part of a candidate key.

(2) the attribute depends on the entire candidate key.

Clearly, A,B are in the candidate key AB. The non-prime attributes C,D both depend on the
entire candidate key AB, so this relation is in 2NF.

→ This relation is not in 3NF because D can be determined through C, so there is a transitive
dependency AB → C → D.

The rest of this page is intentionally left blank.
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Lecture 10

10.1 OnLine Transaction Processing

Definition: OnLine Transaction Processing (OLTP)

OnLine Transaction Processing is a type of data system and is designed for frequent interactive
use and optimizes random access with low latency and can be used in production. Each read/write
is a result of a transaction carries out by the user. RDBMS are a type of OLTP.

OLTP’s typically involve simple queries (e.g. SELECT, basic JOIN’s). They

→ optimize for quick, random access.

→ are based on transactions, which are individual events that are stored as rows in an RDBMS.

→ strive to minimize redundancy and require joins to exploit relationships in data; that is, they are
normalized.

→ are designed for production use: data is typically accessed by online applications or users.

→ abstract data as a 2-dimensional representation called a table.

10.2 OnLine Analytical Processing and Data Warehousing

Definition: OnLine Analytical Processing/Data Warehousing (OLAP/DW)

OnLine Analytical Processing is a system that is not meant to be accessed in production, and
only by internal users. It is read-only and allows for very fast, low latency reads of data.

Data Warehouses are an implementation of OLAP concepts.

Typically, only other automated systems (ETL) write into OLAP’s. They are usually used for analytics
by internal users (e.g. data scientists, business analysts, etc.). OLAP/DW’s are completely different
systems from RDBMS/OLTP, but both typically use SQL.

OLAP’s use an ad hoc write system which writes in batches, since incremental writes are slow. Pure
OLAP systems aren’t very common anymore, but many of the concepts are still used today in relational
databases or data warehouses.

The user still “sees” and “works” with tables. However in OLAP, data is conceptualized as a cube with
rows, columns, and depth. Each cell/subcube is referred to as a measure.

Example

Suppose we have a cube where the length represents shipping date (e.g. 2018), height represents the
product (e.g. tablet), and the depth represents a location (e.g. US West Coast). Then the measure
of this cube is revenue, and looks like

Location Product Shipping Revenue
US West Coast Tablet 2018 $5M
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OLAP is typically used for batch processing and not for production systems. They are optimized for low
latency reads (SELECT) of aggregated or precomputed data. We typically perform a precomputed JOIN

during a low usage period (e.g. overnight) via an automated system like an ETL job and then read from the
OLAP throughout the day.

10.2.1 ETL Jobs in OLAP’s:

An ETL job transfers either all of the data (inefficient) or new data (since the last update). But this
is very costly to the production database (if it’s being used). Additionally, we may lose some data if
inserts/updates in the OLTP are processed during the transfer. Since we typically work with denormalized
tables and aggregates in OLAP’s, this is usually okay.

Addressing Performance: In order to address the performance issue with ETL jobs executing against
the production database, we can have a replica database and run the ETL job against the replica. We can
keep the replica in sync with the production database by performing dual writes, where, on each write to
the production database, we also write to the replica.

10.2.2 Exploded Tables

The first thing OLAP does when the data is loaded is to perform various aggregates and construct different
dimensions (groups). These functions can be:

→ specified a priori by a data engineer.

→ automatically inferred by the system. If we have n grouping columns, then we have
n∑

k=0

(
n
k

)
= 2n

dimensions (groups).

In either case, this process is time consuming and is CPU intensive, hence why it’s usually computed
overnight. You can have multiple data warehouses for the same database. It can be split by department,
region, etc.

Data warehouses also typically store exploded tables, or denormalized tables with precomputed JOIN’s
for low latency reads. There is a catch; we will be working with outdated data most of the time since we
only update the data warehouse periodically and not in real time. Typically, these tables are append-only ;
i.e. no moditications or deletions.

Separation of Concerns: We have a separation between RDBMS and data warehouses because we cannot
always trust the user.

10.2.3 OLAP Operations

There are five operations in OLAP, now implemented in RDBMS. Throughout each operation, assume we
are working with a data warehouse that stores product information where the length is the locations (e.g.
NA), height is the product (e.g. wireless mouse), and depth is the time (e.g. 2003).

Slice: A slice selects one predominant dimension from a cube and returns a new sub-cube. For example,
if we want product = wireless mouse, we get a rectangular representation of data containing only wireless
mice, but across all locations and time. In SQL, this is similar to WHERE.

Dice: A dice selects multiple values from multiple dimensions and returns a new sub-cube. For example,
location = NA and product = Nokia. In SQL, this is similar to a WHERE with AND’s.

Aside

The distinction between slice and dice is typically only in theory. We typically only use slice.
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Rollup: A rollup computes aggregates across all levels of a hierarchical attribute. For example, aggregat-
ing the sales for a particular day ⊆ month ⊆ quarter ⊆ year ⊆ · · · . In SQL, it looks like

SELECT year, month, day, SUM(sales) AS total_sales

FROM hourly_sales

GROUP BY ROLLUP(year, month, day);

where, from left to right, we have least granular → most granular; i.e. year ⊇ month ⊇ day. Generally,
ROLLUP(A, B, C) where

A ⊇ B ⊇ C

Example

The output of the following query:
SELECT year, month, day, SUM(sales) AS total_sales

FROM hourly_sales

GROUP BY ROLLUP(year, month, day);

looks like
year month day total sales
2020 April 21 200
...

...
...

...
2020 December 31 842
2020 April NULL 2662
...

...
...

...
2020 December NULL 8412
2020 NULL NULL 126830
NULL NULL NULL 2526124

Note: A cube in SQL produces all subsets of group columns.

Drill Down: A drill down extracts aggregates at a finer level of granularity. For example, going from an
annual aggregate down to a week or day aggregate.

Example

Dashboarding is an example of using OLAP operations. For example, we can take a Facebook
sentiment analysis.

→ Take a slice where company = Walmart.

→ Filter by gender by dicing where company = Walmart and gender = woman.

→ Choosing a state uses a drill down since states ⊇ counties ⊇ cities ⊇ · · · .

→ If we want to zoom out one level, we use rollup.

Pivot: A pivot converts data from long format to wide format and vice-versa.
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Example

Long Format: In a long format, the table is more flexible so it’s easier to add another row. There
are also no NULL’s. However, we now have redundancy, which implies that this table is denormalized.
It may also be harder to understand.

uid full name assignment mark
012345678 Schmoe, Joe hw1 100
012345678 Schmoe, Joe hw2 99
012345678 Schmoe, Joe hw3 89
876543210 Bruin, Joe hw1 14
876543210 Bruin, Joe hw2 79
876543210 Bruin, Joe hw3 87
876543210 Bruin, Joe hw4 79
424242424 Block, Gene hw1 81
424242424 Block, Gene hw2 37
424242424 Block, Gene hw3 89

⇐⇒
Wide Format: In a wide format, there is less redundancy so it’s easier to understand, but now
we have the possibility of NULL’s and the format is inflexible (since we would have to use an ALTER

TABLE). uid full name hw1 hw2 hw3 hw4
012345678 Schmoe, Joe 100 99 89
876543210 Bruin, Joe 14 79 87 79
424242424 Block, Gene 81 37 89

Note: Long format is more common in analytics and in general.

Long to Wide: We can use a searched case statement to collapse the table from a long format into a wide
format:

SELECT uid, full_name,

SUM(CASE assignment WHEN ’hw1’ THEN ’mark’ ELSE 0 END) AS hw1,

SUM(CASE assignment WHEN ’hw2’ THEN ’mark’ ELSE 0 END) AS hw2,

SUM(CASE assignment WHEN ’hw3’ THEN ’mark’ ELSE 0 END) AS hw3,

SUM(CASE assignment WHEN ’hw4’ THEN ’mark’ ELSE 0 END) AS hw4

FROM homework_grades

GROUP BY uid, full_name;

Wide to Long We can use a union to collapse the table from a long format into a wide format:

SELECT uid, full_name, ’hw1’, hw1 FROM wide_format

UNION

SELECT uid, full_name, ’hw2’, hw2 FROM wide_format

UNION

SELECT uid, full_name, ’hw3’, hw3 FROM wide_format

UNION

SELECT uid, full_name, ’hw4’, hw4 FROM wide_format;

10.2.4 Schemas in Data Warehouses

Data warehouses can be used for joins, but the types of tables in a DW restrict this to:

→ A fact table which contains quantitative data to be analyzed. They are typically denormalized.

→ A dimension table which contains data about attributes of each of these facts.

There are three common schemas in data warehouses.
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Star Schema: The star schema contains a single fact table along with several dimension tables that
must be joined to it to get a result.

Snowflake Schema: The snowflake schema contains a single fact table along with several dimension
tables that must be joined to it to get a result. Unlike the star schema, the dimension table references other
dimension table(s) to be able to fully describe the fact; i.e. multiplie dimension tables need to be joined to
describe the fact.

Galaxy Schema: The galaxy schema contain multiple fact tables that share dimension tables among
them. It is the closest to RDBMS. The multiple fact tables are connected via the dimension table(s) they
share.

10.2.5 DuckDB

DuckDB is an OLAP data store. It can be used standalone. It is in memory and inprocess, optimized for
analytics, uses the columnar data model, and doesn’t require a server.

10.2.6 Summary

OLAP is optimized for fast access to aggregated data or denormalized tables. The data is multidimensional
and dimensions, interactions, and aggregations on them are pre-computed. Data is loaded in bulk (typically
overnight), which may lead to it being outdate but that’s usually not a concern. There are no online
modifications and have very fast read times. Data can be changed from long to wide format (and vice-versa)
via pivoting. Most importantly, many concepts from OLAP apply to RDBMS.

10.3 Data System Architecture

Depending on the type of work that needs to be done with the data, we may opt for an OLTP or an OLAP.
Software engineers and end-users need fast read/write access to interact with the application at hand; i.e.
production data should be stored in an OLTP. Analysts, managers, and scientists typically don’t need access
to real-time data. Therefore, they should use and OLAP.

10.3.1 Replication

One common architecture is to have multiple copies of the same database:

→ A production database that gets its data from another system like an ETL job,

→ a development database that is used to test new features/process diagnotics,

→ a read-only database,

→ optionally, a R&D database.

The databases are kept in sync either via an ETL job, a message bus that multiplexes data operations,
or advanced replication options.

10.3.2 Multiple Systems

We may have multiple systems that contain the same/similar data:

→ DBMS for production data,

→ a key-value store or cache for frequently used data,

→ data warehouses for dashboarding, reporting, and fast access to aggregates,
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→ a search engine for quickly locating records,

→ a big data system for ETL jobs.

10.4 Data Lakes

Definition: Data Lake

A data lake is a single system that contains raw, unprocessed data and has no schema. They can
be thought of as a big repository of raw data.

Clean data lakes require a lot of upkeep, curation, and management. Data lakes may bloat with unnec-
essary data since developers will dump any and all data into them, thinking they will need it one day. Thus,
data lakes may sometimes be called “data swamps” or “data graveyards”.

We want to be able to efficiently access and process data from a data lake, allow data sharing between sys-
tems and users (authorization model), efficiently catalog/index the contents of a data lake, and be (program)
language agnostic.

10.5 Comparisons

RDBMS/Database Data Warehouse Data Lake

Data Normalized, clean tables
Redundant, aggregated or
denormalized

Any type/Raw data

Schema Fixed and Strict
Fixed and checked on bulk
entry

None

Price Good random access Fast reads Bad Performance

Performance Free → Expensive Expensive Cheap/Free

Data Quality Good Curated, May be outdated Bad

Users App/SWE Analysts Who knows

Analytics Not Good Batch processing, Good MapReduce/Big Data

The rest of this page is intentionally left blank.
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Lecture 11

11.1 Distributed Systems

There are two main ways to design a distributed data system.

Replication: In replicated systems, all nodes have the same data. This is good for load balancing, the
system is fault tolerant =⇒ highly available, but mostly consistent.

Example

In a centralized server with three nodes A,B,C, when A executes a write, it also writes to the master
data store, which will write to B,C. If B tries to read data that hasn’t been replicated yet, it will
ask the master data store which will then return the data.

In a decentralized server with three nodes A,B,C, when A executes a write, it also broadcasts to
B,C. This is also known as a gossip model.

Sharding: In sharded systems, different nodes contain different data. Whether or not each node is disjoint
from another is up to design. This is good for low latency (within your local node).

Example

In a centralized server with three nodes A,B,C, when A executes a write, nothing else happens. If
B tries to read data that is written in A, B asks the master data store which will then ask A for the
data.

In a decentralized server with three nodes A,B,C, when A executes a write, nothing else happens. If
B tries to read data that is written in A, B asks A for the data.

11.1.1 Distributed Filesystem Architecture

A distributed filesystem is decomposed into m machines, where each machine mi may have multiple hard
disks. In either case, we allocate space on the disk for a directory that is part of the distributed file system
across the m machines.

11.2 Big Data

Definition: Big Data

Big data is data that is too large to fit into RAM. It can be on the order of terabytes or petabytes.

The purpose of a big data system is to maximize the usage of compute resources to increase the amount
of work we can do per unit time via parallelism. Note that this work involves processing large amounts of
data that may or may not be structured.
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Aside

One common misconception is that parallelism makes data processing faster. This need not be true.
Parallelism increases the maximum throughput, but if there is too much overhead, parallelism can be
slower.

11.3 MapReduce (in Hadoop)

Throughout this section, we will use a word counting example.

11.3.1 MapReduce Operations

Input: The InputFormat will define how records are laid out in files and how to divide groups of records
into splits, which define the level of parallelism.

Map: Once we partition the data into splits, each split will perform the map task on a record. In this
example, we can either

(1) output the key-value pair (w, 1) for every single occurrence of every word w. This uses a lot of disk
I/O but little RAM.

(2) output a key-value pair (w, c) where c is the count for one word w. This uses little disk I/O but more
RAM.

We can do (2) in the map phase or we can implement it in the combiner that performs an aggregation right
after the map phase. The map tasks run on each record in parallel and are independent of one another.

Partition: After each map task completes, we group the key-value pairs by key; all key-value pairs with
the same key will be sent to the same reducer task in the reduce phase. The partitions are local to each
map task. Each key-value pair is assigned to a partition using a hash function applied ot the key followed
by a modulo n where n is the number of reduce tasks. We can implement our own hash function if need be.

Note: Up to the partition phase is map-side.

Shuffle: The partitions from each map task are shuffled across the network to a series of reducers, which
is chosen by the resource manager or job tracker.

Sort: Each partition is sent to the reducer which sorts the key-value pairs by key. The values are then
grouped by key: (key, [list of values]). For example, (Car 2), (Car 1) → (Car, [2, 1]).

Reduce: Each reducer executes a reduce function on the list of values for each key. In this example, we
can apply a summation, or (Car, SUM([2, 1])) → (Car, 3).

Note: We execute all of the reduce functions in parallel. Since the partitioner sent all of the keys to the
correct reducer, we should not have duplicate keys sent to different reducers. The one exception is if there is
an imbalance in the reducers; e.g. the word “the” is more common than the word “xylophone”, so we might
send some “the”s to the x-reducer via a custom hash. This requires a second reduce phase to aggregate all
of the “the”s.

Output: Each reduce task outputs a single file. The total number of output files is equal to the number
of reducers. We can use OutputFormat store the output in an alternate format.

Note: From the sort phase to the output phase are reduce-side.
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11.3.2 Infrastructure and Example

MapReduce functions on each input split independently. It is a shared-nothing model and is embarrass-
ingly parallel. The following Python script is an example of a MapReduce job:

#!/user/bin/env python

'''mapper.py '''

import sys

for line in sys.stdin: # input comes from stdin.

line = line.strip () # remove leading/trailing whitespace.

words = line.split() # split the line into words.

for word in words: # iterate across each word.

print(f'{word}\t{1}') # (w, 1)

#!/user/bin/env python

'''reducer.py '''

import sys

from operator import itemgetter

for line in sys.stdin: # input comes from stdin.

line = line.strip () # remove leading/trailing whitespace.

word , count = line.split('\t', 1) # split the line into (w, c)

count = int(count)

if curr_word == word:

curr_count += count

else:

if curr_word:

print(f'{curr_word }\t{curr_count}') # (w, c)

curr_count = count

curr_word = word

if curr_word == word: # last word

print(f'{curr_word }\t{curr_count}') # (w, c)

To run, do cat fox.dat | ./mapper.py | sort | ./reducer.py.

11.4 SQL in MapReduce

The map phase is a σ/WHERE The reduce phase is a γ. The partition/sort is a GROUP BY, and the reducer
is an aggregation function (e.g. SUM).

11.4.1 Subqueries

Subqueries can encourage parallelism for MapReduce jobs in SQL. The optimizer will order the com-
puteations in a way that the result of the subquery materializes before the outer query.

11.4.2 Efficiency

A join in relational algebra is one operation, but in MapReduce, it’s two operations. Representing relational
algebra as a series of map and reduce steps is inefficient.
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11.5 Apache Spark

Rather than dealing with files and filesystems, we deal with datasets called Resilient Distributed Datasets
(RDD’s) that

→ can be any format.

→ are resilient; if one node fails, there is a replica somewhere else.

→ are distributed; parts of the data can be on differen tnoes in the system.

→ are immutable.

11.5.1 Spark vs. Hadoop

Spark is usually better than Hadoop since:

→ computations are stored in RAM until we explicitly request to persist them to disk (collect()).

→ Spark uses lazy evaluation and builds a DAG. This makes it easier to handle iterative problems.

→ Spark has been measured to be up to 100x faster than Hadoop when using RAM, and 10x faster when
using disk/HDFS.

However, disk is cheap (but slow), so use Hadoop. If you can afford RAM, use Spark.

11.5.2 Transformations

Transformations return immediately but are not persisted to the disk. These commands build the DAG.
Some examples include:

→ sample()

→ reduceByKey()

→ join() filter()

→ sort(), sortByKey()

→ groupBy(), distinct()

→ union(), intersection()

→ map(), flatMap(), mapPartitions()

11.5.3 Actions

The pipeline only executes when an action is executed. These commands execute the DAG. Some examples
include:

→ count(), countByKey()

→ head(), first(), take(n)

→ reduce(func) foreach(func)

→ In DataFrame/DataSet, show()

→ collect(), collectAsList(), collectAsMap()

→ saveAsTextFile(), saveAsSequenceFile(), saveAsObjectFile()
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11.5.4 Examples

Word Counts in Python and Scala

text_file = sc.textFile('hdfs ://... ')
counts = (text_file.flatMap(lambda line : line.split(' '))

.map(lambda word: (word , 1))

.reduceByKey(lambda a, b: a + b))

counts.saveAsTextFile('hdfs ://... ')

val textFile = sc.textFile('hdfs ://... ')
val counts = textFile.flatMap(line => line.split(' '))

.map(wrod => (word , 1))

.reduceByKey(_ + _)

counts.saveAsTextFile('hdfs ://... ')

Computing π in Python and Scala

import random

def inside ():

x, y = random.random (), random.random ()

return x * x + y * y < 1

count = (sc.parallelize(range(NUM_SAMPLES))

.filter(inside).count())

print(f'pi is roughly {4.0 * count / NUM_SAMPLES ')

val count = sc.parallelize (1 to NUM_SAMPLES)

.filter { _ =>

val x = math.random

val y = math.random

x * x + y * y < 1

}. count()

println(s'pi is roughly ${4.0 * count / NUM_SAMPLES}')

11.5.5 Spark SQL

Spark is not an RDBMS and joins in Spark SQL suck. Below is an example of the word counts example in
Spark SQL.

Note: HAVING is only available in pure SQL.

data = spark.read.format('csv').option('header ', 'true').load('data.csv')
data.printSchema () # prints the schema to the data frame.

word_counts = (data.withColumn('cleaned_text ', cleantext(data))

.select('cleaned_text ')

.withColumn('token ', explode('cleaned_text '))

.select('token ')

.where("token != 'the'")

.groupBy('token ')

.count()

.orderBy(desc('count '))

.head (20))

word_counts.explain ()

word_counts.write.csv('...')
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Lecture 12

12.1 (Unbounded) Streaming Data Systems

Definition: Lambda Architecture

The lambda architecture processes massive quantities of data by using both batch and real-
time/stream processing (speed).

Examples of streams include:

→ stdin/out and pipes

→ TCP connections

→ Realtime audio/video and sensor measurements

→ Realtime data (e.g. tweets, stock prices, etc.)

Data streams (events/messages)1 can be of any format (e.g. plaintext, JSON, etc.). Each event is written
once, but may be read multiple times, and may have a key to identify itself (e.g. timestamp, IP addr, etc.)
and/or other identification.

We can store these in a database, but usually we want to act on events as they come, and possibly
without storing them.

12.1.1 Producer/Consumer

There are two ends or “taps” for processing events:

Definition: Producer and Consumer

The producer (publisher, sender) creates an event.

The consumer (subscriber, recipient) receives and processes or hands off an event.

If we want to use an RDBMS, the producers would generate events (rows) continuously into the database
while the consumers constantly poll the database for new events. However, polling (querying) is very
expensive and increaeses latency.

So, rather than “pulling” from a data store, we want to “push” notifications onto the consumers. RDBMS
can use triggers to do this, but it’s limiting.

12.1.2 Messsage Bus

A message bus sits between producers and consumers, where each producer is connected to every consumer
and vice-versa (creating a bipartite graph). Some issues of this approach is:

→ Producers must be hardcoded to the consumers.

→ The producers are all independent, so if one producer goes down, there is no way to compensate

→ If a consumer becomes unavailable, we have to manually spin up a new one.

→ Consumers could be overwhelmed; i.e. producers will produce faster than consumers can consume.
1I will refer to them as “events”.
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12.1.3 Data Integrity

We discuss two use cases:

(1) Replicate to RDBMS.

(2) Compute an aggregate metric (over unbounded data).

Data Loss: In (1), it is bad. In (2), if the messages are missing at random, it is (usually) not bad.

Duplicate Messages: In (1), it is not bad assuming the message has a key. In (2), if receiving duplicates
at random, it is (usually) not bad.

Out of Order Messages: In (1), it is not bad. In (2), it is not bad unless we do sequence mining.

TCP or UDP: Depending on the use case, we may want a TCP or UDP connection. If we to keep a
connection alive between a producer and a consumer along with ordered packets and guaranteed delivery
(retransmission), use TCP. Otherwise, UDP is good enough.

Classifying Streaming Architectures: We can classify systems based on how they react to the following:

→ What happens when if the producers send messages faster than the consumers can process them? Do
we drop or buffer messages? Do we apply backpressure?

→ What happens if one or more nodes (particularly consumers) go offline?

12.2 Message Broker

Definition: Message Broker

The message broker sits inside the message bus and has a message queue. The producers and
consumers interact with the message broker.

When a message is sent to the broker, it enqueues the message and sends an ACK back to the producer.
It then tries to send it to the consumer(s). The broker then waits for an ACK from the consumer before
dequeuing the message. Otherwise, it stays in the buffer (queue).

While it’s usually okay ot lose some messages, we want to minimize the loss. One way we cna do this is
using an ACK system.

12.2.1 Unavailable Consumer

When conumers become too busy or become unavailable, the system can either apply flow control or spin
up more consumers. If we are willing to tolerate some message loss, we ca:

→ Delete the oldest message(s) from the queue. This is okay if we are working with relevant “current”
data.

→ Delete random message(s) from the queue. This is okay if we are computing aggregates.

12.2.2 Producer to Broker

Supose our TTL is 5 seconds. If the message is queued successfully on the broker B, the broker sends an
ACK to the producer P and P dequeues the message. If the message is lost, P retransmits. If the message
is corrupted in transit, B either does nothing or sends a NACK. P then retransmits up to TTL. If ACK
gets lost, P assumes B didn’t receive the message, so it will retransmit. This implies that B may receive
duplicates.
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12.2.3 Broker to Consumer

Suppose our TTL is 5 seconds. If the message is processed successfully, the consumer C sends an ACK and
the broker B dequeues the message. If the message is lost, B retransmits. If the message is corrupted in
transit, C either does nothing or sends a NACK. B then retransmits up to TTL. If ACK gets lost, B assumes
C didn’t receive the message, so it will retransmit. This implies that C may receive duplicates and B may
back up with messages.

12.2.4 Unreliable Broker

If we have an unreliable broker B, the producer P should dequeue the message when it receives an ACK from
the consumer C via B. Some sources of message loss include: lossy networks, P,B,C is offline or overflows
with messages.

12.2.5 Consumers

Multiple consumers can read the same topic stream. But the broker determines which one gets the message
in two ways.

Load Balancing: The broker will choose one consumer to receive the message either arbitrarily or based
on some shard/partition key.

Fan-out: The broker will deliver the message to all consumers in particular groups. Then each node may
do something different with the message. This is similar to multiplexing (e.g. dual writes).

Purpose: No single data system can meet all use cases. Therefore, we may want to have the following
architecture:

→ OLTP and RDBMS for production uses.

→ OLAP/DW for analytics.

→ A search engine for quick lookups.

→ A cache for frequently accessed elements.

All of these systems need to stay in sync, and a streaming system is one way to accomplish this. Another
is by using an ETL job.

12.3 Stream Operations

We can do several things with streams, including:

→ writing events to an RDBMS or other data systems to keep them in sync.

→ pushing events to users (notifications) or dashboarding.

→ processing the stream and trurn it into other data/another stream.

→ computing aggregate summaries of the stream.

12.4 Aggregates

We do not have access to all of the data in a stream, so we typically process data either over a particular
window w of time or over time. The computations can be either exact or approximations.
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12.4.1 Windows

The consumers maintain a memory buffer containing a fixed number of messages. We then compute an
aggregation over the parts of the buffer or at specific time intervals over the entire buffer. There are various
types of computation windows.

Tumbling Window: Tumbling windows are non-overlapping windows of time and are consecutive. This
means the intervals are disjoint. For example, if we compute at the start of every hour over a time length of
one hour, our intervals are disjoint.

Hopping Window: Hopping windows are fixed-length periods, but time intervals may overlap. This way,
there are no hard breaks in the windows since the intervals are not disjoint, giving us some continuity. For
example, if we compute at the start of every hour over a time length of one hour and fifteen minutes, we
have a fifteen minute overlap.

Sliding Window: Sliding windows are constructed with some time period ε around each event.

Session Window: Session windows define an entire session from the first event of a particular type to the
last event (inefficient).

Note: Sliding and session window sizes are defined by the events.

12.4.2 Stragglers

Some straggler events that should have been processed in wt−1 may not arrive until some time after wt−1

has been closed and processed. If we want to compute some metric over the window, we can:

(1) ignore stragglers.

(2) keep the wt−1 open for some δ time to capture stragglers.

(3) offer a correction if we store the metric associated with wt−1.

(4) include the straggler in wt’s metric calculation.

Note that (2) requires us to keep an extra window open. (3) requires an updatable statistic.

12.4.3 Update Rules

We can compute aggregates using an update rule. For example, if we want to keep an average, we need to
store the sum and the count. Our update rule would then be sumt = sumt−1 + x and countt = countt−1 +1
then compute sumt

countt
.

12.5 Special Aggregations

Some special aggregation tasks include set containment, duplicate removal, and distinct counts.

12.5.1 Bloom Filter

A bloom filter is a probabilistic data structure that may return false positives; i.e. x ∈ F when x ̸∈ F for
our bloom filter F . It is defined as a bit string with length m and is associated with k hash functions.
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Algorithm: To check if we have already seen an element x ∈ S for a set S,

(1) compute a hash function (mod) on x: h1(x), . . . , hk(x).

(2) Each hash mod is the position in the array, with k positions total.

(3) Check the bits in each of these positions. If all of the bits are 1’s, x ∈ F with probability p and may
have seen x before. Otherwise, x ̸∈ F .

(4) If x ̸∈ F , set the bit at each position to 1.

Note: There may be hash collisions, which is why we may return a false positive. We can minimize this
by maintaining a low ratio of hash functions to bit length m, as well as controlling the number of entries in
the bloom filter.

Example

Suppose we have a bloom filter F with length m = 10 and k = 3. Our initial filter looks like
0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0

with all entries 0.

h1(“ucla
′′) = 2, h2(“ucla

′′) = 4, h3(“ucla
′′) = 5, so F becomes

0 1 2 3 4 5 6 7 8 9
0 0 1 0 1 1 0 0 0 0

with no collisions.

h1(“bruins
′′) = 0, h2(“bruins

′′) = 6, h3(“bruins
′′) = 9, so F becomes

0 1 2 3 4 5 6 7 8 9
1 0 1 0 1 1 1 0 0 1

with no collisions.

h1(“westwood
′′) = 3, h2(“westwood

′′) = 5, h3(“westwood
′′) = 6, so F becomes

0 1 2 3 4 5 6 7 8 9
1 0 1 1 1 1 1 0 0 1

with collisions at 5 and 6.

h1(“wooden
′′) = 2, h2(“wooden

′′) = 4, h3(“wooden
′′) = 8, so F becomes

0 1 2 3 4 5 6 7 8 9
1 0 1 1 1 1 1 0 1 1

with collisions at 2 and 4. There is no false positive since F [8] ̸= 1.

h1(“boo usc′′) = 0, h2(“boo usc′′) = 5, h3(“boo usc′′) = 6, so F becomes
0 1 2 3 4 5 6 7 8 9
1 0 1 1 1 1 1 0 1 1

with collisions at 0, 5, and 6. There is a false positive since F [0] = F [5] = F [6] = 1.

The probability of a false positive is pfalse positive = (1− e
kn
m )k where k is the number of hash functions,

m is the number of bits, and n is the number of entries.

12.5.2 HyperLogLog

A HyperLogLog is similar to a bloom filter, but we treat the bitstring as a binary number and use run
lengths and probability to provide an estimate of the number of distinct objects in the set. It is spatially
efficient since we can count approximately four billion distinct elements using only 5 bits since log(log(232)) =
5. They have an average error rate of two percent. To use, you would construct a HyperLogLog for each
window of messages, and for each key being counted.
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Lecture 13

13.1 NoSQL

Definition: NoSQL

NoSQL refers to two concepts:

(1) A database system where the DML and DDL are not SQL.

(2) A database system that does not use the relational model. They are usually document-oriented
stores, network/graph databases, or key-value stores.

Common models used for NoSQL are:

→ Key-Value stores (Redis)

→ Columnar (Cassandra)

→ Document store (MongoDB)

→ Graph (Neo4j)

13.1.1 The CAP Theorem

Theorem: (CAP Theorem)

A distributed system can satisfy at most two out of the three when a network partition or failure
occurs.

(1) Consistency: Every read receives the most recent write, or an error occurs.

(2) Availability: Every request receives some kind of response, not necessarily a correct one.

(3) Partition tolerance: The system continues to function even if messages are lost or delayed.

Distributed systems require partition tolerance, so they can be consistent or highly available, not both.

13.1.2 Key-Value Stores (Redis)

Redis stores values by keys but can also store data structures. It has interesting data types:

→ Single key-value pairs

→ Hash tables

→ HyperLogLog and Bloom Filters

→ Streams

→ Geospatial (geohash) including radius queries
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CAP Theorem: Redis operates on a single node configuration. Therefore, the CAP theorem does not
apply. Typical use cases include: session caching, message queues, leaderboards, fast lookup/indexing.

Example

If we have a distributed cache, then our system would now be available and partition tolerant, since
we are now a distributed system.

13.1.3 Columnar Database (Cassandra)

A columnar database is similar to the relational model, but rows can have different numbers of columns,
and adding columns is simple. Given n fixed columns, each row uses a subset of m ≤ n columns.

In Cassandra, every node is equal; i.e. there are no masters or workers. This is done by using the gossip
protocol, making this database eventually consistent.

Columnar databases are designed to be denormalized for fast lookups, and can be used as data warehouses.
Queries written against Cassandra cannot use joins or subqueries, since it isn’t relational. There is no concept
of a foreign key, but primary keys exist. Rows are also strictly ordered.

CAP Theorem: Cassandra is available and partition tolerant.

13.1.4 Document Store (MongoDB)

A document store takes in full documents of information in a particular format (e.g. JSON/BSON). Docu-
ments are schemaless.

In MongoDB, documents (records) are schemaless and stored as a BSON. Records are organized into
collections, which are organized into databases; i.e. records ⊊ collections ⊊ databases.

Find: The find query looks like:

db.Books.find(

{ "category": "programming" }, // Where (WHERE)

{ "_id": 0, "title": 1 } // Projection (SELECT)

)

.sort({ "title": 1 }) // Sort (SORT)

.limit (5); // Limit (LIMIT)

Aggregation: The aggregate query looks like:

db.Books.aggregate ([

{

"$match": { "category": "programming" } // Match (WHERE)

},

// Group (GROUP BY)

// Note; _id: null for global aggregates.

{

"$group": { "_id": "$language", "AvgPrice": { "$avg": "$price" } }

},

{

"$project": { "_id": 1, "AvgPrice": 1 } // Projection (SELECT)

},

{

"$sort": { "AvgPrice": -1 } } // Sort (SORT)

},

{ "$limit": 10 } // Limit (LIMIT)

]);
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Differences from RDBMS: There is a lot of redundancy and no concept of normalization. All related
data stays together, even if it means duplicating it. There is no concept of a JOIN and no schema.

CAP Theorem: MongoDB ensures strong consistency by allowing writes only on the primary replica.
The master is the single point of failure. We can improve availability using secondary replica sets or one or
more copies of the exact same data. On each write, the secondaries must acknowledge the write or else it
fails. All reads are done on the primary replica by default. If it fails, we can defer to one of the secondary
replicas. Therefore, by default Mongo is consistent and partition tolerant.

13.1.5 Graph Database (Neo4j)

In a graph database, data is stored as either a node (vertex) or an edge. Nodes represent entities (relations)
and edges represent relationships (foreign keys). Nodes and edges can have attributes called properties.
Each node and edge can also have a label (type) associated with it. Edges are usually directed for semantic
reasons, but can be traversed in either direction. We an also have self loops.

Neo4j (Cypher) has two common constructs.

Match: MATCH specifies a node-relationship-node for pattern matching.

Where: WHERE is similar to the SQL WHERE, but applies to the properties of nodes.

Example

An example query looks like:

MATCH (gene:Person {name: "Gene Wilder"}) -[ACTED_IN]->{movie:Movie}

WHERE movie.year < $yearParameter
RETURN movie;

with the format: var:Label { name: "to_match"})-[var:EdgeLabel]->{var:Label}. In the ex-
ample above, we look for a node with type Person and name “Gene Wilder”, assigning a temporary
name “gene“. Then we extract only the ACTED IN edges. On the other side, we extract nodes of
type Movie and assign a temporary name “movie” to them. Then we return all movies that aired
before some $yearParameter.

Neo4j supports, but doesn’t require schemas that define indices and constraints:

→ Unique node

→ Node property existence

→ Relationship property existence

→ Constraints aside from uniqueness (pay to win)

→ Many data types. Properties can be standard or composite types.

The rest of this page is intentionally left blank.
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Example

// unique node.

CREATE CONSTRAINT constraint_name IF NOT EXISTS ON (n:LabelName)

ASSERT n.propertyName IS UNIQUE;

// node property existence.

CREATE CONSTRAINT constraint_name IF NOT EXISTS ON (n:LabelName)

ASSERT EXISTS (n.propertyName);

// edge property existence.

CREATE CONSTRAINT constraint_name IF NOT EXISTS

ON ()-"["R:RELATIONSHIP_TYPE"]" -()

ASSERT EXISTS (R.propertyName);

with the format: var:Label { name: "to_match"})-[var:EdgeLabel]->{var:Label}. In the ex-
ample above, we look for a node with type Person and name “Gene Wilder”, assigning a temporary
name “gene“. Then we extract only the ACTED IN edges. On the other side, we extract nodes of
type Movie and assign a temporary name “movie” to them. Then we return all movies that aired
before some $yearParameter.

JOIN’s are relational but the equivalent in graph databases is traversing a graph.

CAP Theorem: Neo4j is not distributed or sharded, so CAP theorem doesn’t apply. It is not distributed
due to clustering.

The rest of this page is intentionally left blank.
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Lecture 14

14.1 Disk

The storage engine/manager is responsible for managing the data in memory and on disk. many systems
optimize data storage for rows, but some optimize for columns. Some database systems store data entirely
in RAM (e.g. Redis), while others use swapping. It is worth noting that disk is very slow.

There are various data storage methods:

→ RAM is fast, expensive, random access, and volatile.

→ SSD’s are faster than HDD’s, aren’t as expensive, have fast random access, and are non-volatile.

→ HDD’s are cheap, slow, and have bad failure rates.

→ Optical is very slow.

→ Tape is very very slow, but it’s cheap and stores data sequentially.

→ Cloud is variable.

14.1.1 Disk Performance

There are various metrics for performance:

→ Access time is the time from a read/write request to block transfer.

→ Seek time is the time from the head to move from parked to a particular sector.

→ Rotational latency is the time it takes to find a sector once the head is on the track.

→ Data transfer rate is the time it takes to transfer a sector to RAM.

→ Mean time between failures (MTBF) is the average time between disk failures.

14.1.2 Disk Organization and Access

Data on disk is addressed by a block number. Data is transferred between RAM and disk in terms of
blocks (page). Accessing a disk can be done sequentially or at random.

Sequential Access: We access blocks in a predetermined order, usually contiguously.

Random Access: Blocks are distributed randomly throughout the disk.

Mitigating Disk I/O: There are several techniques to reduce the disk I/O:

→ Buffering: We can cache n blocks in a buffer.

→ Read-ahead: We can fetch bi+j when we read bi.

→ Scheduling: We group read/write requests by cylinder.

→ File organization: Organize records/blocks on disk in a particular way.

→ Non-volatile write buffers. See below.
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Non-Volatile Write Buffers: If there are a lot of writes taking place, we may have to wait before we
can write the block to disk. We can queue it in a Non-Volatile RAM (NVRAM) while we wait. This way, if
the power cuts, the NVRAM queue will be emptied onto disk. If NVRAM fills up, the database will block.

14.2 Records into Files

A database maps records → blocks → files. One or more records fit into a block and one or more blocks
form a file. We will assume records ⊆ blocks ⊆ files ⊆ relation, where block size is 4KB.

14.2.1 Fixed Blocks

One approach is to store records in a linked list, where records are fixed size. Then indexing becomes
n · block size. There are several issues. If the block size is not a multiple of the record size, we waste space.
When we delete records, we have to rearrange pointers. We can remedy this by addding a pointer to the
first empty record.

Deletes: Deleting is assumed to be rare in databases, but inserts are not. If we want to insert a record,
we look for the block it should belong to and, if there is space, insert. If there is no space, we construct an
overflow block.

Overflow Blocks: A file may start out as sequential and contiguous access on disk. However, over time
we may need to construct overflow blocks which break contiguity. This is acceptable when overflow blocks
are rare, but over time, the performance suffers and so we need to rebuild the data file.

14.2.2 Variable-sized Blocks

We can split the record into two parts: a fixed part and a variable-length part. It looks like the following: A
table of contents points to the variable-sized attributes followed by the data for the fixed sized attributes, a
null bitmap that partitions the table of contents and fixed data from the variable-length data, and the data
for the variale-length attributes. We store a pointer to each record in the file header. The format for the
table of contents is (start byte, length), and are 4 bytes wide. The null bitmap indicates which fields
are null.

14.2.3 Records into Blocks

Records are stored in blocks. Each block contains a header with: the number of records in the block, a
pointer to the end of the free space in the block, and the location and size of each record.

Aside

Given the previous discussion, ALTER TABLE is a bad idea since it changes the format and size of the
record. After modification, the record now needs to store extra information, which may lead to the
creation of overflow blocks since the size of each record may have grown and may exhaust free space.

The rest of this page is intentionally left blank.
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Lecture 15

15.1 Files to Indices

Since records were stored sequentially, finding a specific record by key requires scanning the full file. So,
lookup takes O(B) block transfers for B blocks, with an average of B

2 . This would be required for every
JOIN, WHERE, etc.

15.2 Indexing

An index works as follows: A search key (value) is put into an indexing function, which returns the block
address and byte offset of the particular record(s). There are two types of indices:

→ Ordered indices are based on a sorted ordering of the values of the sort-key. It requires sequential
(maybe contiguous) access.

→ Hash indices are based on a uniform distribution of values across a range of buckets. This is random
access.

An index is usually too large to fit into RAM, so it must be stored on disk. Therefore, we get the best
performance when we read the index file sequentially. If the entire index fits in RAM, the key lookups in
the index are trivial. This still requires us to read it into RAM.

15.3 Index Sequential Access Methods (ISAM)

Ordered indices can be (1) primary (clustering) or (2) secondary (non-clustering) and (1) dense or (2) sparse.

15.3.1 Primary/Clustering Index

In a primary/clustering index, we pick a search key. The keys in both the index and records are sorted
by the search key. This dictates the order of the underlying data file. It does not need to be a primary or
unique key, though it usually is. There is at most one primary index on a table. The primary index returns
a block number and a byte offset that points to the specific record in the file. If there are duplicates, we
point only to the first matching record.

Dense: If the index is dense, there is an index for every record.

Sparse: If the index is sparse, we only keep k < n indices for n records. When querying, we have to
search for the largest index that is less than the requested record and do a linear search. A sparse index
implies that we may be able to read the entire index into RAM. To minimize block transfers, we may want
to add the first search-key in each block into our index.

Pros and Cons: Primary indices are good for range queries and minimal block reads. However, it is
difficult to maintain contiguity on disk because inserting a record into a full block requires creating overflow
blocks. Over time, the file needs to be rebuilt to restore contiguity.
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15.3.2 Secondary/Non-Clustering Index

In a secondary/non-clustering index, the data file is sorted by some search key different from the one
used to create the index. Secondary indices can only be dense. This is because the order of the indices are
different from the order of the data. For duplicate keys, secondary indices must point to both records.

15.4 B+-Trees

Definition: B+-Tree

A B+-Tree adds an extra layer atop an ordered index that points to individual keys. The root and
interior nodes form a sparse index, while the leaves form a dense index and contain the keys that
point to records. Each level represents one disk seek and block transfer.

Under a purely sequential index, data is initially stored contiguously, but may devolve to random access
due to overflows. Eventually, it degrades the performance of the index and we may have to rebuild the index
and data file. By organizing the index into a B+-tree, we can guarantee high record-search performance.

Full Table Scan and Full Index Scan: In a full table scan, we transfer blocks to search for records by
following record pointers. But in a full index scan, we transfer blocks in order to search for the keys, then
do an additional search for the actual record.

15.4.1 Notation

The height of the tree h is defined to be the number of nodes from root to leaf, counting both (counting
fence posts). The left pointers are strictly less than (<) and right pointers are greater than or equal to
(≥) the node value.

Leaf Nodes: A leaf node contains (up to) n pointers and (up to) n − 1 key-values. For a B+-Tree to
maintain balance, a leaf node must contain at least

⌈
n−1
2

⌉
and at most n−1 key-values. Leaves form a dense

index. As such, each leaf points to the next leaf node.

Root and Internal Nodes: A root and internal node contains at least
⌈
n
2

⌉
pointers and (up to) n pointers.

15.4.2 Time and Space Complexities

Insertion and deletion are both O
(
log⌈n

2 ⌉K
)
for K keys and an n-ary tree. There is also additional space

overhead from the internal nodes. There may also be wasted space since nodes need only be half full.
However, it is more efficient than rebuilding the index.

15.4.3 Disk I/O Costs

Action Cost
Traversing between levels tS + tT
Traversing between leaves tT
Fetching a record tS + tT

where tS is one block seek and tT is one block transfer.

15.4.4 Search

Use your eyes lol. The disk complexity to search for one key is h(tS + tT ) operations.
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Range Queries: For {k : k ∈ [i, j]}, we search for i and collect record pointers until we reach j. For an
inclusive range query, we do h (tS + tT ) +

(⌈
j−i+1

n

⌉)
tT operations, where n is the branching factor.

15.4.5 Insertion

We show insertion through example:

Example

Suppose n = 4. Then we have at most n − 1 entries for a node. We will insert {1, 3, 5, 7}. After
inserting 1, 3, 5, we get

1 3 5

When inserting 7, note that it will overflow the root node. So we split at
⌈
n
2

⌉
and create a new parent

node to get

5

1 3 5 7

we do this recursively. We always insert into the leaf nodes and propagate up.

15.4.6 Indexes in SQL

CREATE INDEX name_of_index ON table

[ USING (btree | hash | gist | spgist | gin | brin) ]

(

attr1 [ASC | DESC] [NULLS { FIRST | LAST }],

...

);

by default, creates a B+-tree on attr1. A primary key automatically defines an index.

15.5 Hash Indices

Hash indices are good at equality queries, but not good at range queries. Each key ki points to a bucket bi
via a hash function h : K → B. This bucket points to a linked list of records in RAM, or blocks on disk
matching key h(ki).

15.5.1 Search

We compute h(ki) to get bucket bi and iterate through the blocks/records to find the one we are looking for.
We might have to iterate through due to hash collisions.

15.5.2 Deletion

To delete a key, compute h(ki) and find all records matching ki and delete them from the block/list of
records.

15.5.3 Bucket Overflow

We might have insufficient buckets, so it devolves into a linear search. Another issue we may have is
bucket skew, where many records hash to the same bucket, leading to a non-uniform distribution. One
formula for determining the number of buckets is |B| = 1.2 · nr

f where nr is the number of records and f is
records per bucket.
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Lecture 16

16.1 Spatial Indexing

If we want to extract other points that are within a certain distance of a user, we can use a nearest neighbor
query. In one dimension, we simply divide and conquer.

16.1.1 kd-Trees and Ball Trees

In higher dimensions we can use a kd-tree. We partition our search space, and recursively perform a n-ary
search over the space remaining. Note that a kd-tree will not center you. Rather, it finds all points in a
particular search space. A ball tree uses a radius instead of axes.

Example

If we want to find all points relative to a particular location, we filter based on the desired conditions.
Then, we query the location of the person in the kd-tree and return the results within a certain
boundary (polygon).

16.2 Query Plans

There are many ways to write queries. The optimizer will convert a query into an efficient query plan that
is invisible to the user. It is similar to compiling code into byte code. Query processing has three steps:

(1) The query gets parsed and translated into relational algebra.

(2) We perform a series of query-optimizing transformations.

(3) We evaluate the query using statistics.

Since (1) is trivial, we start at (2).

Example

Different queries may lead to the exact same result set. For example,

SELECT a

FROM r

WHERE c > 1000;

can be written as either

(1) σc>1000 (Πa,c (r))

(2) Πa,c (σc>1000 (r))

After we parse the query into their relational algebra equivalent(s), we determine the “better” query.
However, the RDBMS needs to know a variety of things to estimate the better query. Some of these metrics
include:

(1) Estimated block transfers and seek.
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(2) Number of tuples.

(3) Current CPU/RAM state1.

(4) Data or Network transfer speed.

(5) Disk space.

(6) Time.

16.2.1 Estimating Cost

For data operation, we compute the execution time or the block reads and disk seeks; i.e. disk I/O.

Note: In this class, the disk seek is defined as the time it takes for the head of the disk to find a particular
sector from a parked state. It is not a seek if you’re already on the same track.

in our computations, tT will be the time it takes to transfer one block from disk to memory, and tS the
average block access time (seek time + rotational latency). The amount of time to transfer B blocks with S
random accesses is then

BtT + StS

16.3 Select

Given a SELECT * FROM r WHERE Ψ, we can naively perform a full table scan which reads every single record
in a file when there is no primary key. This becomes O(n) time for n records, or O(B) time for B blocks.

In the following examples, let br be the number of blocks in the file, tT the time it takes to transfer one
block, and tS the seek time.

Example

Suppose we have a sequental file without an index, and we want to find records that match on some
non-key attribute. The total execution time is

tS + br · tT

Notice that we seek to the start of the file before performing (up to) br · tT block transfers.

If the blocks are not stored contiguously, then in the worst case, we seek for every block to get

br(tT + tS)

The rest of this page is intentionally left blank.

1Postgres uses this one.
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Example

If we search for a key, then the worst case is

tS + bR · tT

and happens when the record either DNE or is in the last block. The best case is

tS + tT

and happens when the record is in the first block. The average time is

tS +
br · tT

2

If we index by a primay B+-tree, then traversing from root to leaf is

h(tS + tT )

Searching for a record pointer in the block requires 0 disk I/O since the block is read into RAM. Retrieving
the associated key is

tS + tT

so the total time spent on disk I/O is

h(tS + tT ) + tS + tT = (h+ 1)(tS + tT )

Range Queries: Suppose we want to perform a query on v such that k > v. Then, we want to find v
which takes

h(tS + tT ) + tS

time to get the first record. Fetching all records after takes btT for b remaining blocks at worst.

h(tS + tT ) + tS + btT

To get k ≤ v, we can just process the records starting from the beginning via full index scan instead of a
B+-tree until we get k = v. This means it takes

tS + btT

for b remaining blocks.

16.4 Joins

16.4.1 Nested-Loop Join

A nested-loop join is a brute force way to compute R ▷◁θ S. The algorithm is

result = {}

for each tuple tr ∈ R:

for each tuple ts ∈ S:
if pair (tr, ts) satisfies θ:

result = result ∪(tr, ts)
return result

where the left-hand side is the outer relation and the right-hand side is the inner relation. This algorithm
does not require an index, and thus is very slow. There are also no restrictions on θ. If we have nR tuples
in R and nS tuples in S, we get O(nR · nS) time complexity.
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Example

Suppose we have nR · nS pairs of tuples. For every record in R, we have to do a full table scan of S.
Let bR and bS be the number of blocks in R and S respectively. Then the total number of seeks and
block transfers are

bR + nR

and
nR · bS + bR

respectively.

Example

Suppose R ▷◁ S = S ▷◁ R. If one relation fits entirely in memory, then its blocks are read in exactly
once. If R fits entirely into memory, then we perform

1 + 1 = 2

block seeks and
bR + bS

block transfers if R is the inner relation and

1 + nR

block seeks and
bR + nR · bS

block transfers if R is the outer relation.

16.4.2 Block Nested-Loop Join

A block nested-loop join is a nested-loop join but we process the outer relation by block rather than by
tuple. The algorithm is

result = {}

for each block BR ∈ R:

for each block BS ∈ S:
for each tuple tr ∈ R:

for each tuple ts ∈ S:
if pair (tr, ts) satisfies θ:

result = result ∪(tr, ts)
return result

For each block in R, we load it, so we get bR blocks. we load bS blocks for each block in R to get

bR + br · bS = bR(bS + 1)

block transfers and
2br

block seeks.

16.4.3 Indexed Nested-Loop Join

An indexed nested-loop join is a nested-loop join but we put an index (using a B+-tree or hash) on
the inner relation. The algorithm is: For each tuple tR ∈ R, look up the key from tR ∈ S and retrieve all
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matching tuples to perform a join. This way, once we have an index for S, we only need to scan R to perform
the join. Scanning R takes

bR(tT + tS)

time and indexing takes
cnR

where c is the disk cost of looking up a record from an index. Thus, the total time is

bR(tT + tS) + cnR

in a B+-tree, c = (h+ 1)(tS + tT ), so we get

bR(tT + tS) + nR(h+ 1)(tS + tT )

16.4.4 Merge Join

An merge join sorts both relation before joining them. We sort on R ∩ S. This becomes an interleaved
linear scan since we only scan each relation once. Then the number of block seeks is⌈

bR
bB

+
bS
bB

⌉
and the number of block transfers is

bR + bS

where bB is the buffer size.

16.4.5 Hash Join

An hash join has a build side and a probe side. The build side loads as many blocks w that fit into
RAM, building a hash table on it. Then we do a full table scan over S and check if the hash is in S. Then
we load in the next w blocks, repeating this process. We do |w| windows of blocks worth of full table scans
on S. We then post-filter since we might have hash collisions.

16.5 Joins in Spark

Spark supports several join algorithms. There are two (orthogonal) types of join algorithms:

→ Broadcast Hash/Nested-Loop Join

→ Shuffle Hash/Sort-Merge Join

16.5.1 Broadcast Joins

If one of the tables (e.g. R) can fit into RAM on every executor and the driver, the table is broadcasted
to all executors in the cluster. We then partition the bigger table into n partitions, joining them on R in
parallel. This is not good for outer joins since we cannot perform these in parallel due to joining with

NULL’s on no match by default.

from pyspark.sql.functions import broadcast

...

large_df.join(broadcast(small_df), ["join_key"])

or

SELECT /*+ BROADCASTJOIN(small) */ *

FROM large JOIN small

ON large.foo = small.foo
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Lecture 17

17.1 Auto Commit and Transactions

Definition: Transaction

A transaction is a series of SQL queries that are grouped into one logical operation. Their syntax
looks like

START TRANSACTION

/* queries here */

COMMIT;

END TRANSACTION

Auto-commit is a setting that allows queries to materialize as soon as they are executed. When they’re
turned off, we have to create a transaction. To the user, transactions are a single indivisible unit. Technically,
even a single SQL query can be thought of as a transaction since we actually perform multiple data operations.

Example

If we want to drop two students from a class and add 25 to everyonee else’s score, we’d wrap it up in
a transaction like this:

START TRANSACTION

DELETE FROM final WHERE uid IN ('222222222 ', '333333333 ');
UPDATE final SET score = score + 25;

COMMIT;

END TRANSACTION

Here, we may need a transaction since someone with access to the database may try to update it in
between the DELETE and UPDATE steps, leading to unwanted behavior. Each of the statements are
executed but the results are held in a buffer.

17.1.1 ACID Transactions

ACID stands for Atomicity, Consistency, Isolation, and Durability, and are discussed below.

Definition: Atomic Operation

An atomic operation is one that either fully executes or doesn’t execute at all.

Transactions satisfy atomicity. If an error occurs during the transaction, it aborts and all changes are
rolled back. During a transaction, we may run into any one (or more) of these failures:

→ Data integrity failure; i.e. corrupted data.

→ Constraint failure (on a primary/unique/foreign key, CHECK, etc.).

→ Arithmetic errors (e.g. divide by zero).

→ Disk failure and system outages.
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Definition: Consistency

Consistency maintains some constraint on the data such that we do not end up with an unexpected
amount of data before and after the transaction.

If transactions are run atomically and in isolation starting with a consistent database, we must end up
in a consistent state at the end of the transaction.

Example

Let A = 500, B = 200. If A transfers 100 to B, we want

A+B = 700

before and after the transaction to maintain consistency.

Definition: Isolation

Transactions must happen in isolation; i.e. they operate independently and transparently with one
another. Isolation maximizes consistency in concurrent operations.

We may run into issues if our transactions are not isolated. This happens when we execute transactions
concurrently on the same data.

Definition: Durability

Durability implies that after a transaction completes successfully, the changes are persisted to the
database, even if there are system failures.

Life Cycle of a Transaction: The life cycle of a transaction can be represented as the following graph:

active
partially
committed

committed

failed aborted

Transactions are said to be ACID compliant if they guarantee the above definition. A relational database
must maintain ACID transactions, but NoSQL databases do not.

External Writes: External writes are dangerous, and happen when the RDBMS commits a transac-
tion, but the application doesn’t complete its work. The application must then initiate a compensating
transaction to undo the actions of the original transaction.

Example

If we buy something on Amazon but never receive the item, Amazon’s application must issue a
compensating transaction to either refund the money or send you the item you purchased.
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17.1.2 BASE Transactions

BASE stands for Basically Available Soft-state Eventually consistent. While ACID provides high consis-
tency, BASE provides high availability and eventual consistency.

Definition: Basically Available

Basically availability ensures that the data is highly available by replicating it across nodes of a
database cluster.

Definition: Soft State

Soft state implies that, due to a lack of consistency, data values may change over time and may not
immediately be consistent.

Definition: Eventually Consistent

Eventual consistency implies that, given enough time, the data will become consistent.

17.1.3 Strict ACID Guarantees

For this section, we will abstract SQL operations into either a write(X) or a read(X), where X is a row.

Definition: Read and Write

A read (read(X)) transfers X from the database into a variable X in the transaction buffer.

A write (write(X)) transfers the value of X from the transaction buffer into the data item X in the
database. Technically, it is written to a shared memory buffer (NVRAM).

Example

If we want to change a seat, we can either cancel our seat first and then book a new seat, or we can
first book a new seat and then cancel our old seat. The second one is atomic, but the first one isn’t.
To guarantee atomicity, we can wrap either in a transaction. In terms of ACID,

→ Atomicity: We either swap seats successfully or don’t.

→ Consistency: We occupy exactly one seat.

→ Isolation: Other passengers should not affect consistency.

→ Once the swap is complte, it is materialized.

If S1, S2 are the old and new seats respectively, the actual transaction may look like one of the
following, though there are many options.

T1

read(S1)

S1 = false

write(S1)

read(S2)

S2 = true

write(S2)

COMMIT

T1

read(S2)

S2 = true

write(S2)

read(S1)

S1 = false

write(S1)

COMMIT

T1

read(S1)

read(S2)

S1 = false

write(S1)

S2 = true

write(S2)

COMMIT

T1

read(S2)

read(S1)

S2 = true

write(S2)

S1 = false

write(S1)

COMMIT

T1

read(S1)

read(S2)

S1 = false

S2 = true

write(S1)

write(S2)

COMMIT

T1

read(S2)

read(S1)

S2 = true

S1 = false

write(S2)

write(S1)

COMMIT
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17.2 Concurrency and Parallelism

Concurrency and parallelism are two different concepts. We will be discussing concurrency.

Definition: Concurrency

Concurrency is when we execute two transactions that share a resource and complete in overlapping
time periods.

Example

When there are multiple lines but only one cashier, we have concurrency.

Definition: Parallelism

Parallelism is when two transactions execute at the exact same time.

Example

When there are multiple lines and multiple cashiers, we have parallelism.

17.2.1 Isolation and Consistency

To remain consistent, one option is to execute transactions serially; i.e. only one transaction is running at
any given point. There is no interleaving of the events of transactions.

The rest of this page is intentionally left blank.
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Example

Below is an example of a serial and consistent schedule. Let A = 100, B = 200.
T1 T2

read(A);
A := A - 10;

write(A);
read(B);

B := B + 10;

write(B);

COMMIT;

read(A);
tmp := A * 0.1;

A := A - temp;

write(A);
read(B);

B := B + temp;

write(B);

COMMIT;
T1 → T2 yields A = 81, B = 219.

T1 T2

read(A);
tmp := A * 0.1;

A := A - temp;

write(A);
read(B);

B := B + temp;

write(B);

COMMIT;

read(A);
A := A - 10;

write(A);
read(B);

B := B + 10;

write(B);

COMMIT;
T2 → T1 yields A = 80, B = 220.

Note: In the example above, the results differed but the schedule is still consistent. Further, T1, T2 are
serial since one executes entirely before the other.

Definition: Conflict Serializable

A conflict serializable schedule is a concurrent schedule that yields the same result as a serial
schedule.

The rest of this page is intentionally left blank.
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Example

Below is an example of a conflict serializable schedule. Let A = 100, B = 200.
T1 T2

read(A);
A := A - 10;

write(A);
read(A);
tmp := A * 0.1;

A := A - temp;

write(A);
read(B);

B := B + 10;

write(B);

COMMIT;

read(B);

B := B + temp;

write(B);

COMMIT;
This yields A = 81, B = 219, which is equivalent to T1 → T2.

Example

Below is an example of a schedule that is not conflict serializable. Let A = 1000, B = 2000.
T1 T2

read(A);
A := A - 50;

read(A);
tmp := A * 0.1;

A := A - temp;

write(A);
read(B);

write(A);
read(B);

B := B + 10;

write(B);

COMMIT;

B := B + temp;

write(B);

COMMIT;
This yields A = 950, B = 2100, Since 3000 ̸= 3050, this is not conflict serializable.

The rest of this page is intentionally left blank.
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17.2.2 Serializability: Swapping

If we can convert a concurrent schedule into a serial schedule, it is conflict serializable. To determine
serializability, we look at cross-transaction operations.

T1 T2

read(A);
write(A);

read(A);
write(A);

read(B);

write(B);

read(B);

write(B);
If the two instructions act on different data points, then there is no issue. Otherwise, order matters.

Read after Read: There is no issue. Therefore, we can swap the order.

Write after Read: There may be an issue, since depending on when the data is read, the answer may
be different. This is called a non-repeatable read. Therefore, we cannot swap the order.

Read/Write after Write: See above. Therefore, we cannot swap the order.

Example

Below is an example of a schedule that is conflict serializable.
T1 T2

read(A);
write(A);

read(A);
write(A);

read(B);

write(B);

read(B);

write(B);

→

T1 T2

read(A);
write(A);

read(A);
read(B);

write(A);
write(B);

read(B);

write(B);

→

T1 T2

read(A);
write(A);
read(B);

read(A);
write(A);

write(B);

read(B);

write(B);

→

→

T1 T2

read(A);
write(A);
read(B);

read(A);
write(B);

write(A);
read(B);

write(B);

→

T1 T2

read(A);
write(A);
read(B);

write(B);

read(A);
write(A);
read(B);

write(B);

Example

Below is an example of a schedule that is not conflict serializable.
T1 T2

read(A);
read(B);

write(A);
write(A);

read(B);
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17.2.3 Serializability: Precedence Graph

Another way to determine serializability is to build a precedence graph with vertices Ti. If the graph is a
DAG, it is conflict serializable. Otherwise, it is not. The algorithm is as follows:

→ Draw an edge Ti → Tj if Ti executes an incompatible operation before Tj .

→ Check for cycles. If there is a cycle, the schedule is not conflict serializable. Otherwise, run a topological
sort to find a serial ordering.

Example

Below is an example of a schedule that is not conflict serializable.
T1 T2

read(A);
read(B);

write(A);
write(A);

read(B);
Since read(A) in T1 conflicts with write(A) in T2, we have T1 → T2. But write(A) in T2 conflicts
with write(A) in T1, so T2 → T1. The resulting graph is

T1 T2

so there is a cycle which implies that this schedule is not conflict serializable.

Example

Below is an example of a schedule that is conflict serializable.
T1 T2 T3

read(A);
read(B);

write(A);
write(B);

read(A);
write(A);

We have T3 → T2 and T1 → T2, T3, so the dependency graph is

T1 T2 T3

so T1 → T3 → T2 is one topological ordering, so this schedule is conflict serializable.

17.3 Transaction Isolation Levels

Serializable: In serializable isolation (discussed above), there is little concurrency, it’s equivalent to a serial
schedule, and it performs poorly, but we get maximum consistency and is the strongest form of isolation.

Repeatable Read: If Ti reads X, no other transaction Tj can update it. It will pull a shared (read) lock.
Then, no other transaction Tj can write to X. This is the default isolation level in MySQL.

Read Committed: Ti can only read data from another transaction Tj if it was committed. This is the
default in DB2, SQL Server, and PostgreSQL.

Read Uncommitted: Ti can read from any transaction Tj even if it’s not committed.
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17.3.1 Dirty Read/Write

Definition: Dirty Read and Write

A dirty read is when a transaction can read uncommitted changes from other transactions.

A dirty write is when Ti updates a value, then another transaction Tj changes the same value before
Ti commits.

Example

Consider the following scenario.
T1 T2

read(A);
write(A);

read(A);
write(B);

COMMIT;

failure occurs here.
COMMIT;

T1 will roll back, but T2 will have committed the changes already. Therefore, A is inconsistent.

Note: Only read uncommitted allows for dirty reads.

Note: We can never have dirty writes in any of the isolation levels.

17.3.2 Non-Repeatable/Fuzzy Reads

Definition: Dirty Read and Write

A non-repeatable (fuzzy) read happens when one transaction Ti reads a value, then another
transaction Tj overwrites and commits the value.

Example

Consider the following scenario.
T1 T2

read(A);
read(A);
write(A);
read(B);

write(B);

COMMIT;

read(A);
COMMIT;

T1 reads two different values for A, which makes A inconsistent.

Note: Only read committed/uncommitted allow for fuzzy reads.
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17.3.3 Phantom Read

Definition: Phantom Read

A phantom read happens when one transaction inserts/deletes rows on a table between fetches in
another transaction. They occur on a range of records, not just one.

Example

Consider the following scenario.
T1 T2

SELECT * FROM a WHERE b=c;

INSERT INTO b VALUES (x, c);

COMMIT;

SELECT * FROM a WHERE b=c;

COMMIT;
T1 reads two different values since the set has changed now.

Note: Repeatable read and read committed/uncommitted allow for phantom reads.

Note: Phandom reads only apply to changes made to the set of records, not changes made to existing
records.

Anomalies Permitted by Isolation Levels: Below is a table of the allowable anomalies discussed above
at each isolation level.

Dirty Read Non-Repeatable Read Phandom Read
Serializable No No No
Repeatable Read No No Maybe
Read Committed No Maybe Maybe
Read Uncommitted Maybe Maybe Maybe

The rest of this page is intentionally left blank.
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Lecture 18

18.1 Locking

Definition: Shared and Exclusive Lock

A shared lock allows read access to X for a transaction Ti. Other transactions Tj may hold a shared
lock on Xa.

An exclusive lock allows read/write access to X for a transaction Ti. If Ti holds an exclusive lock
on X, no other transactions are allowed to access X, and they will block.

aThis assumes that all of the locks on X are shared locks.

Locks are used to implement various isolation levels and help to improve consistency while providing a
high level of concurrency/performance.

18.1.1 Starvation

We will demonstrate starvation via example.

Example

Suppose we have the following schedule and assume unlock frees one lock at a time.
T1 T2 T3 T4

lock-S(A)
lock-X(A)

lock-S(A)
unlock-S(A)

lock-S(A)
Here, T2 acquires a shared lock, which forces T1 to block. Then T3 acquires a shared lock. Even when
T2 unlocks, since T3 still holds a shared lock, T1 is still blocked. T4 then acquires a shared lock, and
T1 never got to run, so it is being starved.

Granting Locks: We can prevent starvation by using a pseudo-queuing system: We grant Ti the lock if:

(1) No other transaction holds a conflicting lock.

(2) No other transactions are waiting (blocked) for the lock.

Under this algorithm, the previous example will prevent T1 from starving since T3 will block since T1 was
waiting for the lock on A.

18.1.2 Releasing Locks

When a transaction completes, it will release the lock, but it may not release it immediately. If we unlock
too early, we may lose serializability, and other transactions may be able to make clobbering writes. If we
unlock too late, we may end up with either a fully serial schedule, or deadlock.
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Example

This implements locking into the example from 17.2.1 Isolation and Consistency
T1 T2 Lock Manager
lock-X(B)

grant-X(B, T1)

read(B)

B := B - 50

write(B)

unlock(B)

lock-S(A)
grant-S(A, T2)

read(A)
unlock(A)
lock-S(B)

grant-S(B, T2)

read(B)

unlock(B)

do something(A,B)

lock-X(A)
grant-X(A, T1)

A := A + 50

write(A)
unlock(A)

18.1.3 Two-Phase Locking (2PL)

We make requests to lock and unlock in two phases.

Growing Phase: In the growing phase, we acquire locks. We can only acquire locks in this phase.

Shrinking Phase: In the shrinking phase, we release locks. We can only release locks in this phase.
That is, as soon as a transaction releases one lock, it can no longer acquire new locks.

Consistency and Serializability: 2PL improves consistency since each transaction pulls locks on only
the data. This implies that no other transactions can modify that value until the lock has been released.
2PL also guarantees serializability.

Example

The left example uses 2PL. The right example does not use 2PL.
T1 T2

lock-S(B)

lock-S(A)
lock-S(B)

switch/lock point.
unlock(A)
unlock(B)

lock-X(A)
switch/lock point.
unlock(A)
unlock(B)

T1 T2

lock-S(B)

switch/lock point.
unlock(B)

lock-S(A)
unlock(A)
“switch/lock point”.
lock-S(B)

unlock(B)

lock-X(A)
unlock(A)
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18.1.4 Deadlock

Definition: Deadlock

Deadlock occurs when T1 locks P with an exclusive lock and requests to lock Q. But T2 has
an exclusive lock on Q, so T1 blocks. While T2 holds Q, it requests to lock P . Therefore, both
transactions block.

Note: 2PL does not prevent deadlock.

Example

This is an example of a deadlock while using 2PL.
T1 T2

lock-X(P)
lock-X(Q)

lock-X(Q)

lock-X(P)

18.1.5 Lock Manager

A lock manager handles lock/unlock requests, and stores them in a hash table called a lock table. It can
prevent deadlocks or it can detect when deadlocks are about to occur and tell the transaction to rollback.

Preventing Deadlocks: There are various ways to prevent deadlocks:

→ Acquire all required locks at once.

→ Acquire locks in a certain order (e.g. topological sort) to prevent cycles in a wait-for graph.

→ Use preemption; if Ti request a lock that Tj holds, we can force Tj to rollback and grant Ti the lock
based off priority.

→ Use timeouts: If a lock waits for n time units and still doesn’t acquire the lock, we rollback and start
the transaction over.

Detecting Deadlocks: There are various ways to detect deadlocks:

→ Choose a victim. At least one transaction must be aborted and rolled back. This depends on various
things:

→ How much longer the tranaction needs to finish.

→ How long the transaction has been running for.

→ How many data items the transaction is using.

→ How many more data items the transaction needs.

→ How many transactions will be rolled back.

→ Rollback

→ Repeat until there is no deadlock.

Note: It is entirely possible to starve a transaction if we pick the same victim every time.
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18.1.6 Summary

We want our RDBMS to satisfy ACID transactions. In particular, we need to maintain consistency during
a transaction for data integrity. We also need concurrency for performance, but this can threaten database
consistency. Pure serializability guarantees consistency but it is computationally intensive. We can weaken
our isolation levels to guarantee a consistent result while using concurrency.

18.2 Transactions in NoSQL

18.2.1 Redis

Transactions are subject to the following constraints:

→ All commands in a transaction are serialized. Therefore, everything runs sequentially which implies
that we have pure isolation.

→ We have pure atomicity, but if a failure occurs, Redis will error and restart. The user must then
manually run a utility to recover and undo the transaction.

→ If journal persistence is used (durability), Redis uses a single atomic write call to write the transaction
to disk.

Example

We can prevent inconsistencies in Redis using the WATCH keyword. If anything modifies the key other
than the current transaction, the transaction fails.

WATCH key

val = GET key

val = val + 1

MULTI

SET key $val
EXEC

18.2.2 MongoDB

An update on a single document is atomic. As of v4.4, multi-documetn transactions are ACID compliant
with restrictions.

Example

$session.action ()
db.users.insert ({ _id: 6, name "Ibrahim" })

db.users.updateOne ({ _id: 3, { $set:{ age :50 } } })

session.commit_transaction ()

18.2.3 Neo4j

All DB operations that access the graph, indices, or the schema must be performed in a transaction. Read
commited is the defualt isolation level, so non-repeatable reads are possible. The user can manually acquire
write locks on nodes and relationships to control isolation level. Locks can be acquired for nodes and
relationships separately.
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Epilogue

Disclaimer: Whatever your professor says goes! Don’t take my word for it, I’m just a student lol.

Thanks for reading my notes!
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