
Vector Derivatives
Let x, θ ∈ Rn

θTx: ∇xθ
Tx = θ | ∇θθ

Tx = x
xTAx: ∇xx

TAx = (A+AT)x | ∇AxTAx = xxT | A symmetric, then ∇xx
TAx = 2Ax.

Matrix Derivatives
Let zT ∈ Rm,x ∈ Rn,A ∈ Rm×n.

Rm×n ∋ ∇AzTAx =
[
∂xTAx
∂aij

]
for i = 1, · · · ,m and j = 1, · · · , n

General Formula:
y =

∑n
i=0 aix

i. Higher degrees always fit better, but this may lead to overfitting.
Evaluating Generalization Error
Training data is what’s used to learn θ. Testing data is data that the model has never seen
before. We typically want to do better on testing data. Overfitting is when the model has
low training error, but high testing error. More data helps mitigate overfitting; more data =⇒
more complex models. Underfitting is when a model has high training error and high testing
error. Hyperparameters are parameters chosen before we start training. Validation data is
data used to optimize the hyperparameters. All of these datasets are disjoint.
k-fold Cross Validation
If our training data has N examples, pick any k ∈ Z>0. Define each fold to have N/k examples.
Then, k − 1 folds are used to train the model and learn θ. The kth fold is validation data
used to evaluate the model. We can repeatedly train the model by changing which folds are for
training and validation. Then k − 1 folds→ θ, kth fold→ L.
Data Driven Approach
We train on data to get model parameters θ. In deep NN’s, this results in learning features that

are optimized for image classification. Here, features1 := x̂ =
[
xn · · · 1

]T
are inferred by the

training data. We then test our model to classify new images.
K-Nearest Neighbors (KNN)
Find the k-closest points to xnew in the training set, according to an appropriate metric (e.g.
L2). Then the majority vote is the class xnew is assigned to. Formally: Define the distance
metric d(xnew,x(i)). Choose k ∈ Z>0. Take d(xnew,x(i)) for i = 1, . . . ,m and find the k nearest
neighbors {c1, · · · ck}. Take the plurality vote (randomizing ties) to classify xnew. Here, the
hyperparameters are {k, d(·)}
Issues for Image Classification
(i) pixel differences ̸= semantic differences. If we transform the image, per pixel, the image is
different, but the image is the same. (ii) The curse of dimensionality: As n→∞, the notion of
“distance” becomes harder to define and volume increases exponentially.
Softmax Classifier
We want to “score” an image against each class and pick the class with the highest score.

Example: Let W :=
[
wT

1 · · · wT
c

]T ∈ R10×3072, c = 10,x ∈ R3072,y,b ∈ R10. Then y is the

vector containing the score for class i. The chosen class is i s.t. y(i) := max{y}, where y is

y :=

— wT
1 —
...

— wT
10 —


x
+

b
 =

w
T
1 x+ b1

...
wT

10x+ b1


What a Linear Classifier Does
Let x ∈ R2, y1 = wT

1 x. Then y1 = ∥w1∥∥x∥ cos(θ) = ∥x∥ cos(θ) when ∥w1∥ = 1.
INSERT THE PICTURE
Linear classifiers fail for things like xor.
Chain Rule for Probability
p(a, b) = p(a)p(b | a) = p(b)p(a | b)
p(a, b, c) = p(c)p(a | c)p(b | a, c) = p(a)p(b | a)p(c | a, b) = p(a, c)p(b | a, c)
p(b, c | d, e) = p(b,c,d,e)

p(d)p(e|d)

p(d | e)p(b, c | d, e) = p(a,b,c,d,e)
p(a|b,c,d,e)

1x̂ is the vectorzed version of 1, · · ·xn in y :=
∑n

i=0 aix
i

Softmax

softmaxi(x) :=
ew

T
i x+bi∑c

j=1 e
wT

j
+x+bj

. If we define ai(x) := wT
i x+ bi, we get softmaxi(x) =

eai(x)∑c
j=1 eai(x) .

ai(x) is the score of the image x being in the ith class and softmaxi(x) is the probability of x
being in the ith class.

Notation: Define w̃T
i :=

[
wT

i bi
]
, x̃ :=

[
x
1

]
. Then ai(x̃) = w̃T

i x̃, softmaxi(x̃) = eai(x̃)∑c
j=1 eai(x̃) ,

so the probability that x(j) belongs to class i is given by: Pr(y(j) = i | x(j), θ) = softmaxi(x
(j))

Cross Entropy Loss

L := argmin
θ

1
m

m∑
i=1

(
log

[
c∑

j=1

eaj(x
(i))

]
− ay(i)x(i)

)
For binary classification problems: L := −

m∑
i=1

(yi log[σ(z)] + (1 − yi) log[1 − σ(z)]). Then the

gradient is∇σ(z)L = yi
σ(z)
− 1−yi

1−σ(z)
The parameters for L are θ = {W,b} whereW ∈ Rc×n,b ∈ Rc.

Gradient Descent
Recall that for ε > 0 sufficiently small, f(x + e) ≈ f(x) + εf ′(x). Let L := f, x = θ. Then, for
n-dimensional loss landscapes, we have n search dimensions to make L(θ) → 0. As n → ∞, the
local minima→ global minimum. So L(θ+∆θ) ≈ L(θ)+∆θT∇θL(θ). To minimize L, we need to
find min

u,∥u∥=1
uT∇θL(θ) = min

u,∥u∥=1
∥u∥∥∇θL(θ)∥ cos(θ) = min

u
∥∇θL(θ)∥ cos(θ) which is minimized

when cos(θ) = −1, so u := −∇θL(θ). Then we repeatedly calculate θ ← θ − ε∇θL(θ).
Why Not Numerical? There are too many parameters. Takes too much time.
Intuition: The gradient w.r.t. the parameters is a function of the training data. We can think
of each point as a noisy estimate of the gradient at that point.
Batch v. Minibatch Given m examples:
Batch: uses all m examples in the training data to calculate the gradient. Minibatch: ap-
proximates the gradient by using k examples for computation, where 1 < k < m. Stochastic:
approximates the gradient over one example. We typically use minibatching for neural networks.
Minibatch may be referred to SGD.
Nomenclature: The input layer is the first layer of the NN, typically x. The output layer is
the last layer of the NN, typically z. The hidden layers are the intermediate layers of the NN,
typically hi. For a NN with N layers, we do not count the input layer as part of N . Note that
z are the scores that go a softmax classifier, sometimes called “logits”.
Example
Let h1 = W1x + b1, hi = Wihi−1 + b1 for i = 2, · · · , N − 1, z = WNhN−1 + bN . Then
z = W̃x+ b̃ where W̃ = WN · · ·W1 and b̃ = bN +

∑N−1
i=2 Wibi−1.

Linear f : f(x) = ax + b can be useful if dim(h) ≪ dim(x). This corresponds to finding a
low-rank representation of the inputs (e.g. autoencoder).
f is the activation function and is typically not applied to z.
Hidden Layers as Learned Features: Nonlinear f(hi) finds features of the data. If softmax(z)
is good, then hi is linearly separable.

Learnable Parameters:
(
|x| · |h1|+

(∑N−2
i=1 |hi| · |hi+1|

)
+ hN−1 · |z|

)
+
(
|z|+

∑N−1
i=1 |hi|

)
.

Activation Functions
Sigmoid: σ(x) = 1

1+e−x . ∇xσ = σ(x)(1− σ(x)).
Vanishing Gradient Problem: We want ∇wL to be large since w← w−ε∇wL. Then we have
f(wT

1 x + b) =: σ(w), so ∂L
∂w

= ∂σ
∂w
· ∂L

∂σ
. For extreme inputs, there is no learning since ∂L

∂w
≈ 0,

so w← w+ 0 (saturation). σ can have zig-zagging gradients since σ is always nonnegative.
Output Activations: ŷ(i) = softmaxi(z) is the generalization of σ to multiple classes.

ReLu: relu(x) = max{0, x}. ∇xrelu =

{
1 x > 0

0 else
. ReLu is widely used in practice. It can still

have zig-zagging gradients but there is no saturation.
tanh: tanh(x) = 2σ(2x)− 1. ∇xtanh = 1− tanh2(x) It is zero-centered so there is no vanishing
gradient problem, but there’s still saturation for extreme inputs.

1

Deep Learning Architecture: Input → Hidden → Output → softmax→ L. Loss function:
softmaxi(z). Learning role: θ ← θ − ε∇θL.
Nomenclature
Forward pass is x → · · · → z → L. Backpropagation is ∂L

∂z
→ · · · → ∂L

∂θ1
. Backpropagation

operationalizes the gradient. It is computationally efficient since we cache values during forward
pass to use during the backward pass. In general, we have

∂L
∂x = ∂f

∂x
∂L
∂f

∂L
∂y = ∂f

∂y
∂L
∂f

f ∂L
∂z

x

y

f(x, y)

where ∂f
∂x

, ∂f
∂y

are local gradients and ∂L
∂f

is the upstream gradient.

Gates
Addition: Distribute the upstream gradient ∂L

∂f
.

∂L
∂x = ∂L

∂f

∂L
∂y = ∂L

∂f

+ ∂L
∂f

x

y

f := x + y

Multiplication (Scalar): Switch x, y and multiply by the upstream gradient ∂L
∂f

.
∂L
∂x = y · ∂L

∂f

∂L
∂y = x · ∂L

∂f

× ∂L
∂f

x

y

f := x · y

Multiplication (n-Dimensional Vector/Tensor): Fancy tensor derivative shortcut.
∂L
∂W = ∂L

∂YXT

∂L
∂X = WT ∂L

∂Y

× ∂L
∂f

W

X

Y := WX

Max: Route the upstream gradient ∂L
∂f

.
∂L
∂x = I{y<x} ⊙ ∂L

∂f

∂L
∂y = I{x<y} ⊙ ∂L

∂f

max ∂L
∂f

x

y

f := max{x, y}

ReLu: Hadamard product the upstream gradient ∂L
∂f

.

∂L
∂x = I{x>0} ⊙ ∂L

∂f relu
∂L
∂f

x f := relu(x)

f−1: Derivative of 1/x multiplied by the upstream gradient ∂L
∂f

.

∂L
∂x = − 1

x2 · ∂L
∂f f−1 ∂L

∂f

x f := f−1(x)

ex: Derivative of ex multiplied by the upstream gradient ∂L
∂f

.

∂L
∂x = ex · ∂L

∂f ex
∂L
∂f

x f := ex

xn: Derivative of xn multiplied by the upstream gradient ∂L
∂f

.

∂L
∂x = nxn−1 · ∂L

∂f xn ∂L
∂f

x f := xn

√
x: Derivative of

√
x multiplied by the upstream gradient ∂L

∂f
.

∂L
∂x = 1

2
√

x
· ∂L

∂f

√
x ∂L

∂f

x f :=
√
x

Law of Total Derivatives

∂L
∂x =

n∑
i=1

∂L
∂qi

.

.

.

∂L
∂q1

∂L
∂qn

∂L
∂f · · ·

x

x

q1

qn

f

Multivariate Chain Rule: ∇xz = ∇xy · ∇yz = ∂y
∂x
· ∂z
∂y

= ∂z
∂x

Regularization
Initialization: Weight initialization can heavily impact the performance of a NN. Small ran-
dom weight initialiations cause all activations to go to 0 since ∂L

∂θi
→ 0. Large random weight

initializations cause all activations to go to ∞ since ∂L
∂θi
→∞.

Xavier Initialization
Try to keep the variences between layers equal: var(hi) ≈ var(hj) =⇒ var(∇hiL) ≈ var(∇hjL).
Derivation: Suppose all units are linear; i.e. hi :=

∑nin
j=1 wijhi−1,j and suppose wij , hi−1,j

are independent. Then var(wh) = E2(w) var(h) + E2(h) var(w) + var(w) var(h) = var(w) var(h)

if E(w) = E(h) = 0. Then var(hi) = var
(∑nin

j=1 wijhi−1,j

)
= var(hi−1) ·

∑nin
j=1 var(wij) =⇒∑nin

j=1 var(wij) = 1 to get var(hi) = var(hi−1). Assuming the weights have the same statistics,

nin · var(w) = 1 =⇒ var(w) = 1
nin

. So var(wij) =
1

nin
. Similarly for backprop, var(wij) =

1
nout

,

so var(wij) =
2

nin+nout
= 1

navg
.

Batch Normalization
We want to avoid saturation and high variance in activiations. The issue is that the changes we
make at each gradient step affects the other layers. For example, W3 ←W3 − ε ∂L

∂W3
changes h3

based on h2, but h2 may also change due to W2 ←W2 − ε ∂L
∂W3

. By induction, we see that the
issue propagates. The idea of batch normalization is to make the output of each layer have
unit statistics: hi = relu(xi),E(xi) = 0, var(xi) = 1.
Vanilla: affine → relu→ affine → relu
Batch Normalization: affine → batch-norm → relu→ affine → batch-norm → relu
Other Bullshit (HW): affine → relu→ batch-norm → affine → relu→ batch-norm
Batch norm meets the Xavier Initialization criteria (var(hi) ≈ var(hj)), so you don’t need to
use Xavier but it’s still good to.
Normalizing Unit Activations
Given a batch ofm samples, the normalized value of the ith activation is defined as x̂i :=

xi−µi√
σ2
i +ε

where µi = 1
m

∑m
j=1 x

(j)
i is the mean and σ2

i = 1
m

∑m
j=1

(
x
(j)
i − µi

)2
is the variance of the

activations across the batch. We then scale and shift the normalized activations using learned
parameters γ and β respectively, to get the output yi = γix̂i + βi.
Training: During training, we normalize the output of a layer for each minibatch. We also
compute a running mean and varience of the past k minibatches for 1 ≤ k ≤ N . We learn γ and
β via backpropagation in addition to θ.
Testing: During testing, we use the running mean and variance computed during training to
normalize each layer. Additionally, we use the γ and β that were learned during training.
Regularization is any modification that improves testing/validation error but doesn’t decrease
training error. (e.g. Stopping early)
Parameter Norm Penalty
The parameter norm penalty is denoted as Ω(θ) where Ω is a hyperparameter like L. The
cost function then becomes L := L(θ | X,y) + αΩ(θ) where α ≥ 0 weights Ω(θ).
L2 Regularization
Ω(θ) = 1

2
wTw = 1

2
∥w∥2 promotes models with parameters close to 0. That is, we want the norms

to be small. ∂Ω
∂W

= W, so our gradient step looks like L̃(θ | X,y) = L(θ | X,y) + α
2
wTw →

∇wL̃ = ∇wL̃+αw =⇒ w← w− ε∇wL̃ ⇐⇒ w← (1− εα)w− ε∇wL. We want small weights
because large weights are more sensitive to variable inputs which leads to overfitting.
Extensions: If we know w is close to some b, set Ω(θ) = ∥w− b∥22. More generally, if we need
two weights w(i),w(j) to be close, set Ω(θ) = ∥w(i) −w(j)∥22
L1 Regularization
Ω(θ) = ∥w∥1 =

∑
i |wi|. This may be used for feature selection by pruning weights that are 0.

Sparse Representation
Ω(hi) = ∥h(i)

i ∥.

2

Dataset Augmentation
We can augment (e.g. crop, reflection, gaussian blur, etc.) the original image(s) to increase the
size of the training data and also make the NN more robust to augmented data.
Label Smoothing: Adding noise helps to reduce error. We go from a one hot representation
to label smoothing: L(i) =

∑C
c=1−yc log(pc) → L

(i) =
∑C

c=1−yc(1 − α) + α
C−1

where α is a
hyperparameter.
Transfer Learning
Training a NN in one context and using them in another with minimal additional training.
Ensemble Methods
Training multiple different models and averaging their results at test time.
Intuition: Independent models make independent errors.
Why this works: For one model, E(ε2). Then, E(εiεj) = E(εi)E(εj) if εi ⊥⊥ εj . Then

E
[(

1
k

∑k
i=1 εi

)2]
=
(

1
k

∑k
i=1 E(εi)

)2
= 1

k
E(εi)2. If εi ⊥̸⊥ εj , then 1

k
E(εi)2 + k−1

k
E(εiεj)2 If

the models are perfectly correlated, we get E(εi)2. So we are bounded below and above.

Bagging (Bootstrap Aggregating)
Constuct k datasets by drawing N examples with replacement for each i = 1, · · · , k. Train k
models and ensemble.
Dropout Set a hyperparameter p to be the probability of keeping a neuron in a layer. On any
training iteration, draw a sample binary mask m. Then h ⊙m “drops” hj ∈ h where mj = 0.
At test time, we do hout = relu

(
p ·
∑n

i=1 wihi

)
.

Inverted dropout scales m by 1/p during training so we don’t do anything during testing.
Optimization
Recall SGD: g = ∇θL(θ), θ ← θ − ε∇θL(θ)
Recall Minibatch GD: g = 1

m

∑m
i=1∇θL(θ), θ ← θ − εg.

Momentum
We maintain a running mean of the gradients. Initialize v = 0, α ∈ [0, 1] (typically 0.99). Then
(1) Compute: g (2) Update: v← αv− εg (3) Step: θ ← θ + v
The general formula is vk := −ε

∑k
i=1 α

k−1gi.
Momentum tends to find better local optima since it can take us out of bad ones. The optima that
we find ourselves in tend to be shallow and flat, which means we are more resistant to changes
in θ. Nesterov Momentum
Intuition: If αv is good anyways, we should compute g after αv. Initialize v = 0, α ∈ [0, 1]
(typically 0.99). Then
(2) Update: v← αv− ε∇θL(θ + αv) (3) Gradient step: θ ← θ + v
which is equivalent to
(2) Update: v′ ← αv− ε∇θ̃L(θ̃) (3) Step: θ̃ ← θ̃+v′ +α(v−v) (4) Next: v′ ← v, θ̃′ ← θ̃ where

θ̃ = θ + αv. Momentum is a first moment update.
Adaptive Gradients (Adagrad)
Intuition: As we get closer to the local optima, we want ε→ 0. Initialize a = 0, ν ≈ 0. Then
(1) Compute: g (2) Update: a← a+ g⊙ g (3) Step: θ ← θ + ε√

a+ν
⊙ g

The above says that the more we step in a certain direction, the less impact it should have on
future steps. The issue is that a is monotonically nondecreasing.
RMSProp
Fixes the issue in Adagrad. Initialize a = 0, ν ≈ 0, β ∈ [0, 1] (typically 0.99). Then
(1) Compute: g (2) Update: a← βa+ (1− β)g⊙ g (3) Step: θ ← θ + ε√

a+ν
⊙ g

RMSProp with Momentum
Initialize a = v = 0, ν ≈ 0, α, β ∈ [0, 1] (typically 0.99). Then
(1) Compute: g (2) Accumulate: a← βa+ (1− β)g⊙ g (3) Momentum: v← αv− ε√

a+ν
⊙ g

(4) Step: θ ← θ + v
Adaptive Moments (Adam)
Let v be the first moment, a be the second moment. Initialize a = v = 0, ν ≈ 0, β1, β2 ∈ [0, 1]
(typically 0.99). Then
(1) Compute: g (2) First Moment: v← β1v+ (1− β1)g
(3) Second Moment: a← β2a+ (1− β2)g⊙ g (4) Step: θ ← θ − ε√

a+ν
⊙ v

Adaptive Moments with Bias Correction (Cooler Adam)
Let v be the first moment, a be the second moment, and t be the iteration. Initialize
t = 0,a = v = 0, ν ≈ 0, β1, β2 ∈ [0, 1] (typically 0.99). Then
(1) Compute: g (2) Time Update: t← t+ 1 (2) First Moment: v← β1v+ (1− β1)g
(3) Second Moment: a← β2a+ (1− β2)g⊙ g (4) Bias Correction: ṽ = 1

1−βt
1
v, ã = 1

1−βt
2
a

(4) Step: θ ← θ − ε√
a+ν
⊙ ṽ

Note: All greek letters are hyperparameters (α, β, β1, β2, ε, ν). Additionally, all discussed opti-
mizers are first order methods; i.e. we only use the first derivative.
Challenges in Gradient Descent
Exploding Gradients: Sometimes, the loss function can have “cliffs” where small changes
drastically change L. Because the gradient at the cliff is large, an update can result in going
to a completely differen parameter space. This can be fixed using gradient clipping, which
upperbounds the maximum gradient norm. That is, ∥g∥ > clip so g← g · clip/∥g∥ .
Vanishing Gradients: Similarly, we can have vanishing gradients by repeatedly multiplying
W. By layer t, we have Wt multiplications. If WUΛU−1 is its eigendecomposition, then
Wt = UΛtU−1, so the gradient along ui is grown/shrunken by a factor of λt

i. Architectural
decisions and regularization can fix this. That is, it’s a skill issue.
Convolutional Neural Networks Motivation: For images, FC NN’s require many parame-
ters. In CIFAR-10, the input size is 3072, so we need 3072 weights for each neuron. For a normal
image of size 200 × 200, each neuron in the first layer would require 120000 parameters. This
may lead to overfitting since the number of parameters ↑ =⇒ overfitting.
Convolution
Valid Convolution is defined as (f ⋆ g)(n) :=

∑∞
m=−∞ f(m)g(n +m). We take our filter and

start in the top left, doing point-wise element multiplication and summing up the products. The

output is
(

w−wf+2pad

stride
+ 1,

h−hf+2pad

stride
+ 1
)
where w, h, f are the width, height, and filter respec-

tively. Note that the depth of the filter matches the depth of the input. For nf filters, our
output is the output of every filter applied and then stacked nf times. Each goes through ReLu.
Number of Parameters: We have (wf · hf · d+ 1) · nf parameters with nf filters.

Number of Neurons We have
w−wf+2pad

stride
+ 1 · h−hf+2pad

stride
+ 1 · nf neurons for nf filters with

dimensions wf , hf . Every time we stack units, we increase the receptive field, so if we want the
entire image to be seen, we add more layers.
Midterm Review
Is x3 a good activation function? This activation function is nonlinear and differentiable
everywhere, which satisfy some requirements of a good activation function. However, it is likely
to cause exploding gradients as the gradient can be very large for inputs with large absolute
values. Also, small inputs can lead to vanishing gradients, e.g. inputs that are close to zero
Batchnorm Train v. Test: During training, it first computes the mean and variance of the
minibatch data in the unitwise. Then BatchNorm normalizes the layer’s input based on the mean
and variance. After the normalization, BatchNorm applies two learnable parameters for each
unit: γ for scaling and β for shifting, which are learned during training and allow the network to
adaptively adjust the output distribution. Meanwhile, it also keeps tracking the running averages
for mean and variance through all batches. During testing, BatchNorm uses the fixed accumulated
running averages from training for normalizing the testing data. The learned scaling and shifting
parameters and are then applied to the normalized data.
Increase number of neurons in layers: (i) If the model is originally underfitting on the
training data, adding more units in layers allows the MLP to capture more complex patterns
in the data, which can improve the model performance, e.g. decrease both training and testing
error. (ii) On the other hand, it may also cause overfitting as increasing the model’s capacity is
likely to make the model sensitive to the training data. As a result, the training loss may still
keep decreasing while the testing error increase
Why bias correction? The estimations are biased towards 0 at the start of training because we
initialize them to zero. So, the optimizer is likely to take larger steps in the first couple of updates
of the model, leading to unstable training and slower convergence. Bias correction adjusts these
estimations to be more accurate. After the early phase of training, the estimations tend to be
accurate, so β1, β2 gradually approach 1, reducing the impact of bias correction.

3

Batchnorm

x
(j)
i

µi

−

σ2
i

ε
+

√
· inv

× × + y
(j)
i

γi βi

e
(j)
i c

(j)
i

a
(j)
i

b
(j)
i

x̂
(j)
i

Then omitting the subscript i,

∂L
∂β

=

m∑
j=1

∂L
∂y(j)

∂L
∂γ

=

m∑
j=1

∂L
∂y(j)

x̂(j)

∂L
∂x̂(j)

=
∂L
∂y(j)

∂L
∂a(j)

=
1√

σ2 + ε

∂L
∂x̂(j)

∂L
∂µ

=
1√

σ2 + ε

m∑
j=1

∂L
∂x̂(j)

− ∂L
∂σ2

1

m

m∑
j=1

2(x(j) − µ)

m

∂L
∂b(j)

=
(
x(j) − µ

) ∂L
∂x̂(j)

∂L
∂c(j)

= − 1√
σ2 + ε

(
x(j) − µ

) ∂L
∂x̂(j)

∂L
∂e(j)

= − 1

2(σ2 + ε)3/2
∂L
∂x̂(j)

∂L
∂σ2

=

m∑
j=1

∂L
∂e(j)

∂L
∂x̂(j)

=
∂L
∂a(j)

+
∂σ2

∂x(j)

∂L
∂σ2

+
∂µ

∂x(j)

∂L
∂µ

θ̃ = θ+αv. Then θold,new = θ̃old,new−αvold,new Then vnew = αvold−ε∇θL(θold+αvold)

so ∂L(θ̃old)

∂θ̃
= ∂θ

∂θ̃

∂L(θ̃old)
∂θ = ∂L(θ̃old)

∂θ . So θ̃old − αvnew = θold − αvold + α + vnew becomes

θ̃old = θold + vnew + α(vnew − vold), so we are done.

L̃(θ | X,y) = L(θ | X,y+ α
2 ∥θ∥

2
2. Then∇θL̃ = ∇θL = ∇θL+αθ. Then θ ← θ−ε∇θL̃ =⇒

(1− εα)θ − ε(∇θL(θ | X,y) so we are done.
Consider g1, · · · gt i.i.d with mean µ, varience σ. Then E(θt) = E(θ0) +

∑t
i=1 vi where

gi = µ, θt = θt−1 + vt with E(θ0) = θ0, and vt = −ε
∑t

j=1 gjα
t−j = −εµ

∑t
j=1 α

t−j to

get E(θt) = E(θ0) +
∑t

i=1

∑t
j=1 α

t−j where gi = µ,
Mapping The gradient along the w2 direction is higher than the gradient along w1,
direction. This is because the contour lines along w2 directions are very close to each other
which indicates a steep curve in the w2direction. The contour lines along w1 direction are
further apart and hence has slower descent. (or lower gradient)
Infinity norm
∥x∥ = max{|xi|}, LSE(x) =

∑
exi . Show ∥x∥∞ ≤ LSE(x) ≤ ∥x∥∞ + ln(n). Then

n = 1→ x ≤ x ≤ x+ 0. ✓
n = n+ 1→ x ≤ LSE(x) = x+ ln(n+ 1) so ex ≤

∑n+1
i=1 exi ≤ ex+ln(n+1) or

ex ≤
∑n

i=1 e
xi + exn+1 ≤ (n+ 1)ex = nex + ex. By the inductive hypothesis,

∑
exi ≤ nex

but since exi ≤ ex, we have ex ≤
∑n

i=1 e
xi + exn+1 ≤ (n+ 1)ex, so we are done. ✓

To show ∥x∥∞ ≤ 1
tLSE(tx) ≤ ∥x∥∞ + 1

t ln(n), set x := tx. Then we are done.

4

