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Preface: Legend

Definition

Any definitions will appear in a blue box like this one.

Definition

Any theorems will appear in a green box like this one.

Corollary

Any corollaries will appear in a grey box like this one.

Lemma

Any lemmas will appear in a grey box like this one.
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1 The Integers

Theorem 1.0.1 (Well-Ordering Principle)

Every nonempty set of non-negative integers contain a least element. Mathematically,
∃a ∈ S : ∀b ∈ S, a ≤ b.

Proof. Let S be a set of non-negative integers. Suppose S has no smallest element. Then, 0 ̸∈
S, because otherwise, 0 would be the smallest element. By induction, suppose 0, 1, . . . , k ̸∈ S.
Then, k + 1 ̸∈ S since otherwise, it would be the smallest element. Therefore, S = ∅.

Definition 1.0.1: Divides

Let a, b ∈ Z. b divides a if a = bc for some c ∈ Z, written as b | a.

Proposition: Let a, b ∈ Z, a ̸= 0 such that b | a. Then |b| ≤ |a|.

Proof. Let a, b ∈ Z such that b | a and a ̸= 0. Then there exists some c ∈ Z such that
a = bc. Since a ̸= 0, b, c are necessarily nonzero. Applying the absolute value to both
sides of the equation, we get |a| = |bc| = |b||c|. Since b, c ̸= 0, we have |b|, |c| > 0. Then
|b| ≤ |b||c| = |bc| = |a|, so |b| ≤ |a|.

Theorem 1.0.2 (Division Algorithm)

Let a, b ∈ Z such that b > 0. There exists unique q, r ∈ Z such that a = bq + r where
0 ≤ r < b.

Proof. Existence: Let a, b ∈ Z, b > 0. Consider the set S = {a − bx : x ∈ Z} ∩ Z≥0.
Consider b = −|a|. Then, a − (−|a|)x ∈ S. By the well-ordering principle, choose the
smallest a − bx ∈ S such that q := x, r := a − bx. Then, rearranging r and substituting
q for x, we get a = bq + r ∈ S. By construction of S, 0 ≤ r. Suppose r ≥ b. Then,
0 ≤ r − b = (a− bx)− b = a− b(x− 1). This implies that r − b < r, a contradiction, since
r ∈ S was the least element by choice. Therefore, 0 ≤ r < b.

Uniqueness: Suppose we have q1, r1, q2, r2 ∈ Z such that a = bq1 + r1 = bq2 + r2, where
0 ≤ r1, r2 < b. Then, we have

bq1 + r1 = bq2 + r2

bq1 + r1 − (bq2 + r2) = 0

b(q1 − q2) + (r1 − r2) = 0

b(q1 − q2) = −(r1 − r2)

b(q1 − q2) = r2 − r1

Since 0 ≤ r1 < b, we can rewrite the inequality to be −b < −r1 ≤ 0. Then, adding 0 ≤ r2 < b
to the inequality, we get −b < r2−r1 < b. Because b | (r2−r1), (r2−r1) must be a multiple of
b, but since −b < r2−r1 < b, we have that (r2−r1) = 0b = 0. Then, b(q1−q2) = r2−r1 = 0.
This implies that q1 = q2 and r1 = r2. Therefore, q1, r1 ∈ Z are unique.
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Definition 1.0.2: Greatest Common Divisor (gcd)

Let a, b ∈ Z and either a ̸= 0 or b ̸= 0, but not both. The greatest common divisor
of a and b is the largest integer dividing a and b. We write gcd(a, b) or (a, b).

(a, b) | a and (a, b) | b. Further, if c > 0 divides a and b, then 0 < c ≤ (a, b).

Theorem 1.0.3 (Bezout’s Identity)

Let a, b ∈ Z with a ̸= 0 or b ̸= 0, but not both. Suppose d = (a, b). We can find
x, y ∈ Z such that ax+ by = d.

Proof. Let d = (a, b). Consider the set S = {ax+by : x, y ∈ Z}∩Z≥0. Consider x = a, y = b.
Then ax + by = a2 + b2 ≥ 0 ∈ S, so S is not empty. By the well-ordering principle, choose
the least element s = ax + by ∈ S and consider a = sq + r where 0 ≤ r < s. Rearranging
the second equation, we get

a = sq + r

r = a− sq

= a− (ax+ by)q

r = a(1− xq) + b(−yq)

This implies that r ∈ S since 0 ≤ r by definition. We also have that r < s, but since s was
chosen to be the smallest element in S, this forces r = 0. Then, a = sq + r = sq, so s | a.
Similarly, b = st for some t ∈ Z, so s | b. Since s | a and s | b, s ≤ d. But d | a and d | b by
definition, so d | s which implies that d ≤ s. Therefore, d = s = ax+ by.

Theorem 1.0.4

Let a, b ∈ Z and suppose a | bc and (a, b) = 1. Then a | c.

Proof. Because (a, b) = 1, we can write 1 = ax + by. Also, since a | bc, there exists some
z ∈ Z such that bc = az. Then

c = cax+ cby

= a(cx) + (bc)y

= a(cx) + a(zy)

c = a(cx+ zy)

Therefore, a | c.
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Corollary 1.0.1

Let a, b, c ∈ Z and (a, b) = 1. If a | c and b | c, then ab | c.

Proof. Since (a, b) = 1, we have ax+ by = 1. By definition, since a | c and b | c, there exist
n,m ∈ Z such that c = na and c = mb. Then, we have

1 = ax+ by

c = cax+ cby

= (bm)ax+ (an)by

= (ba)mx+ (ab)ny

c = ab(mx+ ny)

so ab | c.

1.1 Prime Numbers

Definition 1.1.1: Prime

A nonzero non-unit integer p is prime if its only divisors are ±1,±p.

Theorem 1.1.1

Let p ∈ Z \ {0,±1}. The following statements are equivalent.

(1) p is prime.

(2) If p | bc, then p | b or p | c where b, c ∈ Z.

Proof. (1) =⇒ (2) Suppose p is prime and p | bc. If p | b, we are done, so suppose p ∤ b.
Then, (p, b) = 1, so we have

1 = px+ by

c = cpx+ cby

= p(cx) + (bc)y

= p(cx) + (pn)y p | bc =⇒ bc = pn, n ∈ Z
= p(cx) + p(ny)

c = p(cx+ ny)

so p | c.
(1) ⇐= (2) To prove the reverse implication, suppose the contrapositive: “If p is not prime,
then there exist some b, c ∈ Z such that p | bc but p ∤ b and p ∤ c”. Suppose p ∈ Z\{0,±1} is
not prime; i.e. p is composite. Then, p can be written as its unique factorization q1q2 · · · qn
where n ≥ 2 and each qi is prime. Choose b = q1 and c = q2 · · · qn. Then p | bc because
bc = p and p | p, but p ∤ b and p ∤ c because |p| > |b| and |p| > |c| respectively.
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Theorem 1.1.2

Let n ∈ Z \ {0,±1}. n can be written as a product of primes.

Proof. Let n > 1. Let S be the set of positive integers greater than 1 that cannot be written
as a product of primes. Suppose for the sake of contradiction that S is nonempty. Then by
the well-ordering principle, pick a least element m ∈ S. By definition, m is not prime or a
product of primes. Because m is not prime, there exists a ∈ Z such that a ̸= ±1,±m and
a | m. Then, m = ab for some b ∈ Z. By definition, |a| ≤ |m| and |b| ≤ |m|. Without loss of
generality, assume a, b > 0. Note that b ̸= 1 since otherwise, a = m. So, 1 < a, b < m and
a, b ̸∈ S. Because a, b ̸∈ S, they are products of primes. But m = a · b, so m is a product of
primes, a contradiction. Therefore, S = ∅, so n can be written as a product of primes.

Theorem 1.1.3 (Fundamental Theorem of Arithmetic)

Let n ∈ Z \ {0,±1}. Suppose n = p1 · · · pr and n = q1 · · · qs where each pi, qj is prime.
Then r = s and there is a unique permutation σ on {1, . . . , r} such that pi = ±qσ(i).

Proof. Let n ∈ Z \ {0, 1}. Without loss of generality, suppose n is positive and n = p1 · · · pr
and n = q1 · · · qs where each pi, qj is prime. Then p1 | q1 · · · qs. In particular, p1 | qj for some
j ≤ s. Because qj is prime, we necessarily have that qj = |p1|. Without loss of generality
reindex j = 1 to get q1 = |p1|. Then, p1 · (p2 · · · pr) = p1 · (q2 · · · qs) =⇒ p2 · · · pr = q2 · · · qs.
By induction, we have that pr = qr. If r < s, by the above, we have that 1 = qr+1 · · · qs,
which implies qj = 1 for each j. A similar argument is said for s < r. In either case, we have
a contradiction. Therefore, r = s and there is a unique permutation σ on {1, . . . , r} such
that pi = qσ(i).

1.2 Modular Arithmetic

Definition 1.2.1: Well-Defined Functions

A function f : X → Y is well-defined if, for all a, b ∈ X, we have f(a) = f(b)
whenever a = b.

Definition 1.2.2: Equivalence Relation

A relation R on a set S is any subset of S×S. An equivalence relation is a relation
with the following properties:

1. Reflexivity: For any a ∈ S, (a, a) ∈ R (alternatively written as a ∼ a).

2. Symmetry: For any (a, b) ∈ S × S , (a, b) ∈ R implies (b, a) ∈ R (alternatively
written as a ∼ b =⇒ b ∼ a).

3. Transitivity: For any a, b, c ∈ S, if (a, b), (b, c) ∈ R, then (a, c) ∈ R (alternatively
written as a ∼ b, b ∼ c =⇒ a ∼ c).
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Pick m ∈ Z to be nonzero. The Division Algorithm says that for any a, b ∈ Z, we can
write a = q1m+ r1, b = q2m+ r2 for unique q1, q2, r1, r2 ∈ Z where 0 ≤ r1, r2 < |m|.

Definition 1.2.3: Modulo

Define a relation Rm on Z by saying (a, b) ∈ Rm if and only if r1 = r2 (alternatively
written as a ∼ b if and only if r1 = r2). We write this as a ≡ b (mod m).

Proposition: For any m ∈ Z nonzero, Rm is an equivalence relation.

Proof. Let Rm be the relation defined above for m ∈ Z nonzero.

(1) For any a ∈ Z, write a = bq + r. Then, since r = r, a ≡ a (mod m), Rm is reflexive.

(2) Take a, b ∈ Z and assume a ≡ b (mod m). By the division algorithm, we can write
a = q1m+ r1, b = q2m+ r2. By assumption, a ≡ b (mod m), so r1 = r2. Since equality
is symmetric, r1 = r2 ⇐⇒ r2 = r1, so b ≡ a (mod m). Rm is symmetric.

(3) Pick a, b, c ∈ Z and assume a ≡ b (mod m), b ≡ c (mod m). By the division algorithm,
we can write a = q1m + r1, b = q2m + r2, c = q3m + r3. By assumption, r1 = r2 and
r2 = r3. Since equality is transitive, r1 = r2, r2 = r3 =⇒ r1 = r3, so a ≡ c (mod m).
Rm is transitive.

Since Rm satisfies (1)− (3), Rm is an equivalence relation.

Definition 1.2.4: Equivalence Class

If R is an equivalence relation on a set S, then S can be written as the union of
equivalence classes. The equivalence class of x is the set [x] := {y ∈ S : (x, y) ∈ R}.

Note: The equivalence classes of Rm are [0], [1], . . . , [m− 1].

Definition 1.2.5: Congruent Modulo n

Let a, b ∈ Z and n ∈ Z be positive. We say a and b are congruent modulo n if
n | (a− b), written as a ≡ b (mod n).

The integers modulo n is the set of equivalence classes modulo n, written as
Z/n,Zn,Z/nZ,Z/(n).

Definition 1.2.6: Operations on Z/n

Let n ∈ Z and [a], [b] ∈ Z/n. Define

→ [a] + [b] = [a+ b]

→ [a][b] = [ab]

→ For k ≥ 0, [a]k = [ak]
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Proposition: The operations above are well-defined.

Proof. Let n ∈ Z and [a], [a′], [b], [b′] ∈ Z/n where [a] = [a′], [b] = [b′]. Then ([a] = [a′] and
[b] = [b′] implies n | (a − a′) and n | (b − b′), so n | (a − a′) + (b − b′) = (a + b) − (a′ + b′).
Therefore, [a+ b] = [a′ + b′]. Similarly,

ab− a′b′ = ab+ 0− a′b′

= ab+ (−ab′ + ab′)− a′b′

= (ab− ab′) + (ab′ − a′b′)

ab− a′b′ = a(b− b′) + b′(a− a′)

Since n | (a− a′) and n | (b− b′), n | ab− a′b′, so [ab] = [a′b′].

Proposition: Let [a], [b], [c] ∈ Z/n. Then the following properties hold:

(1) [a] + [b] = [b] + [a]

(2) [a] + ([b] + [c]) = ([a] + [b]) + [c]

(3) [a] + [0] = [a]

(4) There exists x ∈ Z such that [a] + x = [0]

(5) [a][b] = [b][a]

(6) [a]([b][c]) = ([a][b])[c]

(7) [a][1] = [a]

(8) [a]([b] + [c]) = [a][b] + [a][c]

Proof. Let [a], [b], [c] ∈ Z/n. Then

(1) [a] + [b] = [a+ b] = [b+ a] = [b] + [a]

(2) [a] + ([b] + [c]) = [a] + [b+ c] = [a+ b+ c] = [a+ b] + [c] = ([a] + [b]) + [c]

(3) [a] + [0] = [a+ 0] = [a]

(4) Take x ∈ Z such that x = n− a. Then, [a] + x = [a] + [n− a] = [a−n− a] = [n] = [0].

(5) [a][b] = [ab] = [ba] = [b][a]

(6) [a]([b][c]) = [a][bc] = [abc] = [ab][c] = ([a][b])[c]

(7) [a][1] = [a · 1] = [a]

(8) [a]([b] + [c]) = [a][b+ c] = [a · (b+ c)] = [ab+ ac] = [ab] + ac] = [a][b] + [a][c]

9



Definition 1.2.7: Unit and Inverse

Let n > 1 be an integer. Consider [a] ∈ Z/n. If there exists [b] ∈ Z/n such that
[a][b] = [1], then we say [a] is a unit and [b] is the inverse of [a], written as [a]−1.

Theorem 1.2.1

Let p > 1 be an integer. The following statements are equivalent:

(1) p is prime.

(2) Each nonzero [a] ∈ Z/p has an inverse.

(3) If [ab] = [0], then either [a] = [0] or [b] = [0]

Proof. Let p > 1 be an integer.
(1) =⇒ (2) Take [a] ∈ Z/p to be nonzero. Then p ∤ a since p is prime. That is, (p, a) = 1.
Then px + ay = 1, or [1] = [px + ay] = [px] + [ay]. But [px] = [p][x] = [0][x] = [0] ∈ Z/p,
so [1] = [0] + [ay] = [ay] = [a][y]. Then, [y] is the inverse of [a]. Since [a] was arbitrary, this
holds for all [a] ∈ Z/p.

(2) =⇒ (3) Let [a], [b] ∈ Z/p and suppose [ab] = [0]. If [a] = 0, we are done, so suppose
[a] ̸= 0. Then, [a] has an inverse, so [a]−1[ab] = [a]−1[a][b] = [1][b] = [b] = [0]. Therefore,
either [a] = [0] or [b] = [0].

(3) =⇒ (1) Suppose for the sake of contradiction that p is not prime; i.e. p is composite.
Then we can find a divisor a > 0 such that a ̸= ±1,±p. That is, |1| < a < |p|. Let p = ab.
Then 1 < a, b < p, but [ab] = [p] = [0], a contradiction.

Theorem 1.2.2

Let n > 1 be an integer and [a] ∈ Z/n. Then [a] has a multiplicative inverse if and
only if (a, n) = 1.

Proof. ( =⇒ ) Suppose [a] has a multiplicative inverse. Then there exists [x] ∈ Z/n such
that [a][x] = [1]. Then

[1] = [a][x]

= [ax] + [0]

= [ax] + [ny] [ny] = [0] ∈ Z/n, y ∈ Z
[1] = [ax+ ny]

so (a, n) = 1.

( ⇐= ) Suppose (a, n) = 1. Then ax + ny = 1 for some x, y ∈ Z, but [ny] = [0] ∈ Z/p, so
[ax] = [a][x] = [1], where [x] is the multiplicative inverse of [a].
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Theorem 1.2.3 (Chinese Remainder Theorem)

Let m,n ∈ Z be coprime and positive. Let a, b ∈ Z. We can find x ∈ Z such that

x ≡ a (mod m)

x ≡ b (mod n)

Moreover, if y is another solution, then y ≡ x (mod mn).

Proof. Let m,n ∈ Z such that (n,m) = 1. Then we can write na+mb = 1 for some a, b ∈ Z.
Set x := c(na) + d(mb). Then

[x]m = [cna]m + [dmb]m

= [n(cn)]m + [m(db)]m

= [a(cn)]m + [0] [m(db)]m = [0] ∈ Z/m
[x]m = [a]m

so [x]m = [a]m. Similarly, [x]n = [b]n. So we have

x ≡ a (mod m)

x ≡ b (mod n)

Let y be another solution. Then [y]m = [x]m so m | y − x. Similarly, n | y − x. But since
(n,m) = 1, we have that mn|y − x, or [y]mn = [x]mn. So y ≡ x (mod mn).

The rest of this page is intentionally left blank.
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Theorem 1.2.4 (Chinese Remainder Theorem [General])

Let m1, . . . ,mn ∈ Z be positive and pairwise relatively prime (i.e., (mi,mj) = 1 when
i ̸= j). Let a1, . . . , an ∈ Z. We can find x such that

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

...

x ≡ an (mod mn)

Moreover, if y is another solution, then y ≡ x mod m1m2 · · ·mn

Proof. We will induct on n ∈ N.
Base case: At n = 2, we have m1,m2 ∈ Z where (m1,m2) = 1. Then, we can find p, q ∈ Z
such that m1p +m2q = 1. Then, because m2q ≡ 0 (mod m2), we have m1 ≡ 1 (mod m2).
Similarly, m2 ≡ 1 (mod m1). Consider x = (m2q)r + (m1p)s for r, s ∈ Z. Then, since
(m2q)r ≡ 0 (mod m2), we have x ≡ (m1p)s ≡ s (mod m2). Similarly, x ≡ (m2q)r ≡ r
(mod m1). So, x ≡ r (mod m1) and x ≡ s (mod m2). Now suppose y is another solution.
Then, we have y ≡ x (mod m), which implies that m1|(y − x) and similarly, m2|(y − x).
Then because (m1,m2) = 1, we have that m1m2|(y − x), so y ≡ x (mod m1m2).

Inductive step: At n = n + 1, we have m1,m2 ∈ Z where (m1,m2) = 1. Then by the
inductive hypothesis, we have a set of n pairwise coprime integers m1, · · · ,mn where x′ ≡ ai
(mod mi) for each i = 1, · · · , n. Define M =

∏n
i=1 mi and consider x = x′ + sM for some

s ∈ Z. Then since mi|M implies sM ≡ 0 (mod mi) and from the inductive hypothesis,
x′ ≡ ai (mod mi), we have x ≡ x′ + sM ≡ x′ ≡ ai (mod mi) for i = 1, · · · , n. At mn+1,
because mn+1 ∤ M , we can choose an s ∈ Z such that x ≡ x′ + sM ≡ an+1 (mod mn+1).
Now suppose y is another solution. Then y ≡ x′ (mod M) and y ≡ an+1 (mod mn+1). Since
(M,mn+1) = 1, by the inductive hypothesis, we have that y ≡ x (mod Mmn+1), so y ≡ x
(mod m1m2 · · ·mn+1).

The rest of this page is intentionally left blank.
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2 Rings

Definition 2.0.1: Ring

A ring R is a nonempty subset with two operations, addition (+) and multiplication
(·) such that, for all a, b, c ∈ R, the following properties hold:

(1) a+ b ∈ R

(2) a+ (b+ c) = (a+ b) + c

(3) a+ b = b+ a

(4) There exists 0 ∈ R such that 0 + a = a+ 0 = a for all a ∈ R.

(5) For all a ∈ R, there exists −a such that (−a) + a = a+ (−a) = 0.

(6) a · b ∈ R

(7) a · (b · c) = (a · b) · c

(8) a · (b+ c) = a · b+ a · c

(9)∗ There exists 1 ∈ R such that 1 · a = a · 1 = a for all a ∈ R.

∗A set satisfying (1) - (8) is called a nonunital ring. If the set also satisfies (9), it is
called a unital ring.

→ A ring is commutative if, for all a, b ∈ R, a · b = b · a.
→ An element a ∈ R is a zero divisor if there exists a nonzero b ∈ R such that

a · b = 0 or b · a = 0.

→ An element a ∈ R is a unit if there exists b ∈ R such that a · b = b · a = 1, and is
called the inverse of a, written as a−1.

Proposition: Let n > 1, a ∈ Z. If (a, n) = 1, [a] is a unit. Otherwise, it is a zero divisor.

Proof. Let n > 1 and a ∈ Z. There are two cases.

Case (1): (a, n) = 1. Then ax+ ny = 1 so [ax] = [a][x] = [1] where [x] is the inverse of [a],
so [a] is a unit.

Case (2): (a, n) ̸= 1. Then (a, n) = d for d > 1. Then, ax+ny = d so [ax] = [d]. Since d|n,
n = dm for some m ∈ Z. Then since [d] = [dm] = [0], we get [ax] = [a][x] = [0],
where [x] is nonzero, so [a] is a zero divisor.

13



Proposition: Let R be a ring and a, b, c ∈ R. The following hold:

(1) The additive identity is unique.

(2) An additive inverse is unique.

(3) If a+ b = a+ c, then b = c.

(4) The multiplicative identity is unique.

(5) If a is a unit, then its inverse is unique.

(6) 0 · a = a · 0 = 0

(7) (a)(−b) = −ab = (−a)(b)

(8) −(−a) = a

(9) −(a+ b) = −a− b

(10) −(a− b) = −a+ b

(11) (−a)(−b) = ab

Proof. Let R be a ring. Then

(1) Let 0, 0′ ∈ R be two additive identities. Then 0 = 0 · 0′ = 0′ · 0 = 0′.

(2) Let a ∈ R have two additive inverses b, c ∈ R. Then
b = 0 + b = (c+ a) + b = c+ (a+ b) = c+ 0 = c.

(3) Let a+ b = a+ c. Then (−a+ a) + b = (−a+ a) + c → 0 + b = 0 + c → b = c.

(4) 1, 1′ ∈ R be two multiplicative identities. Then 1 = 1 · 1′ = 1′ · 1 = 1′.

(5) Let a ∈ R be a unit with two multiplicative inverses b, c ∈ R. Then
b = b · 1 = b · (ac) = (ba) · c = 1 · c = c.

(6) Let a ∈ R. Then 0 = (a+ a) · 0 = a0 + a0 = a0. Similarly, 0 = 0a.

(7) Let a, b ∈ R. Then a0 = a(b + (−b)) = ab + (a)(−b) =⇒ (a)(−b) = −ab. Similarly,
(−a)(b) = −ab.

(8) Let a ∈ R. Then
−(−a) = 0− (−a) = (a+ (−a)) + (−(−a)) = a+ ((−a)− (−a)) = a+ 0 = a.

14 Proof continues on the next page...



(9) Let a, b ∈ R. Then

−(a+ b) = 0− (a+ b))

= 0 + 0− (a+ b))

= (a− a) + (−b+ b)− (a+ b)

= a+ (−a− b) + b− (a+ b) a− b = a+ (−b)

= (−a− b) + (a+ b)− (a+ b)

= (−a− b) + 0

−(a+ b) = −a− b

(10) Let a, b ∈ R. Then −(a− b) = −(a+ (−b)) = −a− (−b) = −a+ b.

(11) Let a, b ∈ R. Then (−a)(−b) = a(−(−b)) = ab.

2.1 Subrings

Definition 2.1.1: Subring

Let R be a ring. A subring S ⊆ R is a subset such that S forms a ring with the
same operations and same identities as R. If S forms a nonunital ring with the same
operations or forms a ring but 1s ̸= 1R, S is a nonunital subring.

Let R be a ring. S ⊆ R is a subring of R if and only if it satisfies the following:

(1) 1R ∈ S

(2) S is closed under addition.

(3) S is closed under multiplication.

(4) If a ∈ S, then −a ∈ S.

Definition 2.1.2: Integral Domain

A commutative ring R is an integral domain if it has no nonzero zero divisors. That
is, if a, b ∈ R and ab = 0, then a = 0 or b = 0.

Proposition: Let R be an integral domain and a, b, c ∈ R. If ac = bc for c ̸= 0, then a = b.

Proof. Suppose ac = bc. Then ac− bc = 0 → (a− b)c = 0. because R is an integral domain,
(a−b) = 0 or c = 0. But since c ̸= 0 by assumption, (a−b) = 0 which implies that a = b.

Definition 2.1.3: Field

Let R be a commutative ring. If all nonzero elements of R are units, R is a field.
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Proposition: Every field is an integral domain.

Proof. Let R be a field. Since all nonzero elements of R are units, they cannot be zero
divisors.

Theorem 2.1.1

Every finite integral domain is a field.

Proof. Let R be a finite integral domain R = {r1, . . . , rn}. Take ri ∈ R to be nonzero.
Consider riR = {rir1, . . . , rirn} ⊆ R. Then, |riR| ≤ |R| since riR ⊆ R. Take rirj, rirk ∈ riR
such that rirj = rirk. Then because ri ̸= 0, we have rirj − rirk = 0, or (rj − rk)ri = 0. Since
ri ̸= 0 by assumption, (rj − rk) = 0 → rj = rk. So R ⊆ riR which implies |R| ≤ |riR|.
Because |riR| ≤ |R| and |riR| ≥ |R|, |riR| = |R|.

Definition 2.1.4: Homomorphism

Let R, S be rings. A function f : R → S is a ring homomorphism if

(1) f(a+ b) = f(a) + f(b)

(2) f(a · b) = f(a) · f(b)

(3)∗ f(1R) = 1S

∗A function satisfying (1), (2), but not (3) is a nonunital ring homomorphism.

Proposition: Let R, S be rings and f : R → S a ring homomorphism. Given a, b ∈ R, the
following hold:

(1) f(0R) = 0S

(2) f(−a) = −f(a)

(3) f(a− b) = f(a)− f(b)

(4) If a ∈ R is a unit, then f(a) is a unit and f(a−1) = [f(a)]−1.

Proof. Let R, S be rings and f : R → S a ring homomorphism.

(1) Take any a ∈ R. Then f(a) + 0S = f(a+ 0R) = f(a) + f(0R), so f(0R) = 0S.

(2) 0S = f(0R) = f(a+(−a)) = f(a) + f(−a), so f(a)+f(−a) = 0S =⇒ f(−a) = −f(a).

(3) f(a− b) = f(a+ (−b)) = f(a) + f(−b) = f(a) + (−f(b)) = f(a)− f(b).

(4) Let a ∈ R be a unit. Then there exists a−1 ∈ R such that aa−1 = 1. Then
1S = f(1R) = f(aa−1) = f(a)f(a−1) and 1S = f(1R) = f(a−1a) = f(a−1)f(a), so f(a)

is a unit and define [f(a)]−1 := f(a−1) to get f(a−1) = [f(a)]−1.
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Definition 2.1.5: Isomorphism

Let f : R → S be a ring homomorphism. f is an isomorphism if f is a bijection. Then
R and S are isomorphic, written as R ≃ S.

Definition 2.1.6: Kernel and Image

Let f : R → S be a ring homomorphism.

→ The kernel of f is defined as ker(f) := {a ∈ R : f(a) = 0S}.
→ The image of f is defined as Im(f) := {f(a) : a ∈ R}.

Proposition: Given a ring homomorphism f : R → S, the image of f is a subring of S and
the kernel of f is a nonunital subring of R.

Proof. Let f : R → S be a ring homomorphism. Then
Im(f) is a subring of S: Given f(a), f(b) ∈ Im(f), we have the following:

(1) f(a) + f(b) = f(a+ b) ∈ Im(f).

(2) f(a)f(b) = f(ab) ∈ Im(f).

(3) −f(a) = f(−a) ∈ Im(f).

(4) f(1R) = 1S ∈ Im(f).

so Im(f) is a subring of S.

ker(f) is a nonunital subring of R: Given a, b ∈ ker(f), we have the following:

(1) f(a+ b) = f(a) + f(b) = 0S + 0S ∈ ker(f).

(2) f(ab) = f(a)f(b) = 0s · 0S ∈ ker(f).

(3) f(−a) = −f(a) = −0S = 0S ∈ ker(f).

(4) f(0R) = 0S ∈ ker(f).

so ker(f) is a nonunital subring of R.

Proposition: Let f : R → S be a ring homomorphism. Then, for any a ∈ ker(f) and
b ∈ R, we have ab, ba ∈ ker(f).

Proof. f(ab) = f(a)f(b) = 0S · f(b) = 0S = f(b) · 0S = f(b)f(a) = f(ba) ∈ ker(f).

Definition 2.1.7: Initial Object

Z is the initial object. Let R be any ring. Then, there is a unique homomorphism
f : Z → R. At n = 1, 1 7→ 1R. At n = n + 1, n + 1 7→ 1R + · · ·+ 1R︸ ︷︷ ︸

n times

+1R. The same

is true for n < 0. f as defined above is a well-defined ring homomorphism.
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2.2 Ideals

Definition 2.2.1: Ideal

Let R be a ring and I ⊆ R a nonempty subset. I is an ideal of R if I is a nonunital
subring such that for all a ∈ I and x ∈ R, xa, ax ∈ I. This is often called the
“absorbing property”.

Remark: The kernel of any ring homomorphism is an ideal. Further, all ideal can be
realized as the kernel of a ring homomorphism.

Definition 2.2.2: Principal Ideal

Let R be a commutative ring and a ∈ R. The principal ideal (a) is an ideal where
(a) := {ar : r ∈ R}. We say “a generates I”. Note that (a) ⇐⇒ aR.

Theorem 2.2.1

Let R be a commutative ring and a ∈ R. Then the principal ideal (a) is an ideal.

Proof. Suppose (a) is the principal ideal. Then, 0 = a · 0 ∈ (a). Given ar1, ar2 ∈ (a),
ar1+ar2 = a(r1+r2) ∈ (a). Take ar ∈ (a). Then −ar = a(−r) ∈ (a). Take ar1 ∈ (a), r ∈ R.
Then (ar1)r = a(r1r) ∈ (a). Because (a) is a nonunital subring with the absorbing property,
it is an ideal.

Theorem 2.2.2

Let R be a ring and I1, . . . , Ik be ideals. Then

(1) I1 + · · ·+ Ik = {i1 + · · ·+ ik : ij ∈ Ij} is an ideal.

(2) I1 ∩ · · · ∩ Ik is an ideal.

Proof. Let R be a ring, and I1, · · · , Ik be ideals.

I1 + · · ·+ Ik = {i1 + · · ·+ ik : ij ∈ Ij} is an ideal.

(1) Since Ij is an ideal, 0 ∈ Ij so we get 0 + · · · 0 = 0 ∈ I1 + · · ·+ Ik.

(2) Take two elements a, b ∈ I1 + · · · + Ik. We can rewrite a, b as, a = p1 + · · · + pk and
b = q1 + · · · + qk for pj, qj ∈ Ij. Then a + b = (p1 + · · · + pk) + (q1 + · · · + qk) =
(p1+q1)+ · · ·+(pk+qk), and since pj+qj ∈ Ij for all j ≤ k, we get a+b ∈ I1+ · · ·+Ik.

(3) Take any a ∈ I1 + · · · + Ik. We can rewrite a as, a = p1 + · · · + pk for pj ∈ Ij.
Consider an element r ∈ R. Then, ar = (p1 + · · · + pk)r = p1r + · · · + pkr. Similarly,
ar = r(p1 + · · · + pk) = rp1 + · · · + rpk. Since Ij is an ideal, pjr, rpj ∈ Ij. Then
ar, ra ∈ I1 + · · ·+ Ik.

(4) Let a := a1 + · · ·+ ak ∈ I1 + · · ·+ Ik. Since Ij is an ideal, there exists −a ∈ Ij, so we
get −a1 + · · ·+−ak = −(a1 + · · ·+ ak) = −a ∈ I1 + · · ·+ Ik.

Because I1 + · · ·+ Ik satisfies (1) - (4), I1 + · · ·+ Ik is an ideal.

18 Proof continues on the next page...



I1 ∩ · · · ∩ Ik is an ideal.

(1) Since Ij is an ideal, 0 ∈ Ij, so 0 ∈ I1 ∩ · · · ∩ Ik.

(2) Take two elements a, b ∈ I1 ∩ · · · ∩ Ik. Then since each Ij is an ideal, a + b ∈ Ij. So,
a+ b ∈ I1 ∩ · · · ∩ Ik.

(3) Take any a ∈ I1 ∩ · · · ∩ Ik. Consider an element r ∈ R. Then, since each Ij is an ideal,
ar, ra ∈ Ij. Therefore, ar, ra ∈ I1 ∩ · · · ∩ Ik.

(4) Take any a ∈ I1 ∩ · · · ∩ Ik. Then, since Ij is an ideal, −a ∈ Ij, so −a ∈ I1 ∩ · · · ∩ Ik.

Because I1 ∩ · · · ∩ Ik satisfies (1) - (4), I1 ∩ · · · ∩ Ik is an ideal.

Definition 2.2.3: Multiple Generators

Let R be a commutative ring and a1, . . . , ak ∈ R. The ideal generated by a1, · · · ak is
geiven by (a1) + · · ·+ (ak) and is written as (a1, . . . , ak).

Proposition: Let F be a field. The only ideal of F are {0} and F .

Proof. Let I be a nonzero ideal of F and take a ∈ I. Then, 1 = aa−1 ∈ I. Because 1 ∈ I,
F = (1) = I.

2.3 Quotient Rings

Preface: To generalize the construction of Z/n to general rings, consider the following:
given an ideal I ⊆ R, define equivalence where a ∼ b if a− b ∈ I. We can then inherit (+, ·)
from R. Given two equivalence classes [a], [b], define [a] + [b] = [a+ b] and [a] · [b] = [ab].

Definition 2.3.1: Congruent Modulo I

Let R be a ring, I ⊆ R and ideal, and a, b ∈ I. a and b are congruent modulo I if
a− b ∈ I. We write a ≡ b (mod I), or a+ I = b+ I.

Remark: The notation a + I := {a + x : x ∈ I} is precisely the congruence class
modulo I containing a.

Proposition: Let R be a ring and I ⊆ R an ideal. Congruence modulo I is an equivalence
relation.

Proof. Let R be a ring and I ⊆ R an ideal.

(1) For any a ∈ R, a− a = 0 ∈ I, so a ≡ a (mod I).

(2) Take a, b ∈ R such that a ≡ b (mod I). Then a − b ∈ I. Since I is an ideal,
−(a− b) = b− a ∈ I, so b ≡ a (mod I).

(3) Let a, b, c ∈ R such that a ≡ b (mod I) and b ≡ c (mod I). Then a − b, b − c ∈ I.
Then (a− b) + (b− c) = a+ (−b+ b)− c = a− c ∈ I, so a ≡ c (mod I).

Since congruence modulo I satisfies (1)− (3), it is an equivalence relation.

19



Theorem 2.3.1

Let R be a ring, a, b, c, d ∈ R, and I ⊆ R and ideal. Suppose a ≡ c (mod I), b ≡ d
(mod I). Then a+ b ≡ c+ d (mod I) and ab ≡ cd (mod I).

Proof. Since a − c, b − d ∈ I, we have that (a − c) + (b − d) = (a + b) − (c + d) ∈ I. Then
by definition, we have a+ b ≡ c+ d (mod I). Now consider the following:

ab− cd = ab+ 0− cd

= ab+ (−bc+ bc)− cd

= (ab− bc) + (bc− cd)

ab− cd = b(a− c) + c(b− d)

Since a− c, b− d ∈ I, ab− cd ∈ I, so ab ≡ cd (mod I).

Notation: (a+ I) + (b+ I) = (a+ b) + I and (a+ I)(b+ I) = ab+ I.

Definition 2.3.2: Quotient Ring

Let R be a ring, a, b ∈, and I ⊆ R and ideal. The quotient ring R/I is the set of
congruence classes modulo I with (+, ·) defined as (a+ I) + (b+ I) = (a+ b) + I and
(a+ I)(b+ I) = ab+ I respectively.

Proposition: R/I is a ring.

Proof. I’m not checking all 9 axioms lol.

Theorem 2.3.2

Let R be a ring and I ⊆ R and ideal. If R is commutative, then R/I is commutative.

Proof. Take a + I, b + I ∈ R/I. Then (a + I)(b + I) = ab + I and (a + I)(b + I) = ab + I,
so ab+ I = ba+ I =⇒ (a+ I)(b+ I) = (b+ I)(a+ I).

Note: If R/I is commutative, it does not imply that R is commutative. For example, if
I = R, then R/I ≃ {0}.

Definition 2.3.3: Canonical Projection

Let R be a ring, I ⊆ R and ideal. Consider π : R → R/I such that π(a) = a+ I. This
map is the canonical projection.
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Theorem 2.3.3

Let R be a ring, I ⊆ R and ideal. The canonical projection π : R → R/I is a surjective
ring homomorphism with ker(π) = I.

Proof. Let R be a ring, I ⊆ R and ideal. Let π : R → R/I be the canonical projection from
R to R/I. Then

(1) π(a+ b) = (a+ b) + I = (a+ I) + (b+ I) = π(a) + π(b).

(2) π(a · b) = (a · b) · I = (a · I) · (b · I) = π(a) · π(b).

(3) π(1R) = 1 + I = 1R/I .

so π is a ring homomorphism. Take a+I ∈ R/I. Then π(a) = a+I. Moreover, if b ∈ [a+I],
then π(b) = a + I. So π is surjective. Finally, let a ∈ I. Then π(a) = a + I but a ≡ 0
(mod I), so we have π(a) = a+ I = 0R+ I = I. So, ker(π) ⊆ I. Now suppose π(a) = 0R+ I.
Then [a + I] = [0R + I], or a ≡ 0R (mod I). We can rewrite this to get a− 0R = a ∈ I, so
I ⊆ ker(π). Because ker(π) ⊆ I and I ⊆ ker(π), ker(π) = I.

The rest of this page is intentionally left blank.
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Theorem 2.3.4 (First Isomorphism Theorem)

Let f : R → S be a ring homomorphism. The following hold:

→ There exists a unique homomorphism f : R/ ker(f) → S such that f = f ◦ π.
→ R/ ker(f) ≃ Im(f).

R S

R/ ker(f)

f

π
f

Proof. Let f : R → S be a ring homomorphism. Then

f is well-defined: Suppose a+ ker(f) = a′ + ker(f). Then a− a′ ∈ ker(f), so f(a− a′) =
0 = f(a)− f(a′). This implies f(a) = f(a′), so f is well-defined.

f is a homomorphism:

(1) f(1R + ker(f)) = f(1R) = 1S.

(2) Take a+ ker(f), b+ ker(f) ∈ R/ ker(f). Then

f((a+ b) + ker(f)) = f(a+ b) = f(a) + f(b) = f(a+ ker(f)) + f(b+ ker(f))

(3) Take a+ ker(f), b+ ker(f) ∈ R/ ker(f). Then

f((a · b) + ker(f)) = f(a · b) = f(a) · f(b) = f(a+ ker(f)) · f(b+ ker(f))

so f is a homomorphism.

f = f ◦ π: Take a ∈ R. Then, f ◦ π(a) = f(π(a)) = f(a+ ker(f)) = f(a).

f is unique: Suppose we have another function g : R/ ker(f) → S such that f ̸= g. Then
there exists b ∈ R/ ker(f) such that g(b+ ker(f) ̸= f(b+ ker(f)), so

g ◦ π(a) = g(π(a)) = g(a+ ker(f)) ̸= f(a+ ker(f)) = f(a)

Therefore, f is unique.

R/ker(f) ≃ Im(f): Take a + ker(f) ∈ ker(f). Then f(a + ker(f)) = f(a) = 0. Since
a+ker(f) was arbitrary, this holds for all a+ker(f) ∈ ker(f), so f is injective. Now take any
y ∈ Im(f). Then there is some z ∈ R such that f(z) = y. Set x := z + ker(f) ∈ R/ ker(f).
Then f(x) = f(z+ker(f)) = f(z) = y, so f is surjective. Since f is injective and surjective,
it is bijective, and therefore R/ ker(f) ≃ Im(f).

The rest of this page is intentionally left blank.

22



Theorem 2.3.5 (Correspondence Theorem)

Let R be a ring, and I ⊆ R an ideal. Consider the projection π : R → R/I and let
R := R/I. Then

(1) There is a bijective correspondence between ideals in R containing I and ideals
of R given by J 7→ π(J) = {r + I : r ∈ J} and J 7→ π−1(J) where J ⊆ R and
J ⊆ R are ideals.

(2) If an ideal J ⊆ R corresponds to J ⊆ R, then R/J ≃ R/J .

Proof. (1) To show that π(J) is an ideal of R, take a, b ∈ π(J) and r + I ∈ R. Then
π(a+ b) = (a+ b) + I = (a+ I) + (b+ I) = π(a) + π(b) and (a+ I)(r+ I) = ar+ I ∈ π(J).
Similarly, ra + I ∈ π(J). To show that π−1(J) is an ideal of R, take a, b ∈ π−1(J). Then
note that π(a + b) = (a + b) + I = (a + I) + (b + I) = π(a) + π(b) ∈ J , so a + b ∈ π−1(J .
Also, note that π(ar) = ar+ I = (a+ I)(r+ I) ∈ J , so ar ∈ π−1(J). Similarly, rb ∈ π−1(J).
So π(J) is an ideal of R and π−1(J) is an ideal in R.

π−1(π(J)) = J : Let a ∈ π−1(π(J)). Then by definition of the pre-image under π, there
exists x ∈ J such that π(a) = π(x) ∈ π(J), or a+I = x+I, which implies that a−x ∈ I ⊆ J ,
so a ∈ I ⊆ J . Since a was arbitrary, π−1(π(J)) ⊆ J . Now let b ∈ J . Then by definition,
π(b) = b+ I. Then, π−1(π(b)) = π−1(b+ I) but by definition of the pre-image, π−1(b+ I) =
b ∈ π−1(π(J)). Since b was arbitrary, J ⊆ π−1(π(J)). Since we have π−1(π(J)) ⊆ J and
π−1(π(J)) ⊇ J , π−1(π(J)) = J .

π(π−1(J)) = J : Let a + I ∈ π(π−1(J)). Then there exists x ∈ R such that x ∈ π−1(J)
and π(x) = a + I ∈ J . Since a was arbitrary, π(π−1(J)) ⊆ J . Now let b + I ∈ J . Then by
definition, b + I is in the image of J under π, so b ∈ π−1(J). Then π(π−1(b + I)) = π(b) =
b + I ∈ π(π−1(J)). Since b + I was arbitrary, J ⊆ π(π−1(J)). Since π(π−1(J)) ⊆ J and
π(π−1(J)) ⊇ J , π(π−1(J)) = J .

Therefore, there exists a bijective correspondence between the ideals J ⊇ I in R and and
the ideals J ⊆ R.

(2) Consider the canonical projection ϕ : R → R/J . Since ϕ and π are surjective, the
composition ϕ ◦ π : R → R/J is as well. By the First Isomorphism Theorem, we have

R/ ker(ϕ ◦ π) ≃ R/J .

ker(ϕ ◦ π) = J : Let J = π(J). Take a ∈ J . Then ϕ ◦ π(a) = ϕ(π(a)) = ϕ(a + I) =
(a + I) + J , but since a + I ∈ J , we have that (a + I) + J = 0 + J ∈ ker(ϕ ◦ π). Since
a was arbitrary, J ⊆ ker(ϕ ◦ π). Now take any b ∈ R such that ϕ ◦ π(b) = 0 + J . Then,
(b+ I) + J = 0+ J . By definition, b+ I ∈ J = π(J). Then b+ I is the image of J under π,
so b ∈ π−1(J) = π−1(π(J)) = J . Since b was arbitrary, ker(ϕ ◦ π) ⊆ J . Since J ⊆ ker(ϕ ◦ π)
and J ⊇ ker(ϕ ◦ π), J = ker(ϕ ◦ π).
Therefore, R/J ≃ R/J .
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Theorem 2.3.6 (Chinese Remainder Theorem [Rings])

Let R be a commutative ring, a, b ∈ R, and I, J ⊆ R be ideals such that I + J = R.
We can find x ∈ R such that

x ≡ a (mod I)

x ≡ b (mod J)

Moreover, if y is another solution, then y ≡ x (mod I ∩ J).

Proof. Because I + J = R, we can find i ∈ I and j ∈ J such that i + j = 1R. Then i ≡ 1
(mod J) and j ≡ 1 (mod I). Consider x := bi+ aj. Then

x = bi+ aj

≡ aj (mod I)

≡ a · 1 (mod I)

x ≡ a (mod I)

and

x = bi+ aj

≡ bi (mod J)

≡ b · 1 (mod J)

x ≡ b (mod J)

Now suppose that y is another solution. Then y ≡ x (mod I) and y ≡ x (mod J). By
definition, this means that y − x ∈ I and y − x ∈ J , so y ≡ x (mod I ∩ J).

The rest of this page is intentionally left blank.
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Theorem 2.3.7 (Chinese Remainder Theorem [Isomorphism])

Let R be a ring and I, J ⊆ R be ideals such that I + J = R. The quotient rings
(R/I)× (R/J) and R/(I ∩ J) are isomorphic.

Proof. Consider f : (R/I)× (R/J) given by a 7→ (a+ I, a+ J). Then

(1) f(1R) = (1R + I, 1R + J)

(2) Take a, b ∈ R. Then

f(a+ b) = ((a+ b) + I, (a+ b) + J) = (a+ I, a+ J) + (b+ I, b+ J) = f(a) + f(b)

(3) Take a, b ∈ R.

f(a · b) = ((a · b) + I, (a · b) + J) = (a+ I, a+ J) · (b+ I, b+ J) = f(a) · f(b)
so f is a homomorphism.

Take (a+ I, b+J) ∈ (R/I)× (R/J). By the Chinese Remainder Theorem (Rings), we
can find x ∈ R such that x+ I = a+ I and x+ J = a+ J . Then, f(x) = (a+ I, b+ J), so f
is surjective. Suppose f(a) = 0. Then a ∈ I and a ∈ J , so a ∈ I ∩ J . Now take a ∈ I ∩ J .
Then a ∈ I and a ∈ J , so a+ I ∈ I and a+ J ∈ J . By the First Isomorphism Theorem,
we have R/(I ∩ J) = R/ ker(f) ≃ Im(f) = (R/I)× (R/J).

2.4 Prime and Maximal Ideals

Preface: All rings in this subsection are commutative rings.

Definition 2.4.1: Prime Ideal

Let R be a commutative ring and let I ⊊ R be a proper ideal. I is a prime ideal if,
whenever ab ∈ I for a, b ∈ R, we have either a ∈ I or b ∈ I.

Example: Let R be an integral domain. Then (0) is prime since whenever ab ∈ (0), we
have that either a ∈ (0) or b ∈ (0).

Proposition: (p) ⊊ Z is a prime ideal if and only if p ∈ Z is prime.

Proof. Let p ∈ Z be nonzero.

( =⇒ ) Suppose (p) ⊊ Z is a prime ideal. Consider ab ∈ (p). Then either a ∈ (p) or b ∈ (p).
By definition, we can write ab = pr for some r ∈ Z, so p | ab. But we also have that either
a = pq or b = ps for some q, s ∈ Z, so either p | a or p | b. Then, since these two statements:

(1) p is prime.

(2) If p | ab, then p | a or p | b.

are equivalent, p ∈ Z is prime.

( ⇐= ) Suppose p ∈ Z is prime and consider the ideal (p) ⊊ Z. Consider ab ∈ Z such that
p | ab. Then either p | a or p | b. Since p | ab, we have that ab = pr for some r ∈ Z, so
ab ∈ (p). By a similar argument, either a ∈ (p) or b ∈ (p), so (p) ⊊ Z is a prime ideal.
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Theorem 2.4.1

Let R be a commutative ring and let I ⊊ R be a proper ideal. The quotient ring R/I
is an integral domain if and only if I is prime.

Proof. Let R be a commutative ring and let I ⊊ R be a proper ideal.

( =⇒ ) Suppose R/I is an integral domain. Take ab ∈ I. Then (a+I)(b+I) = ab+I = 0+I.
Since R/I is an integral domain, we have that either a + I = 0 + I or b + I = 0 + I. This
implies that either a ∈ I or b ∈ I, so I ⊊ R is prime.

( ⇐= ) Suppose I is a prime ideal. Take ab+ I ∈ R/I. Then ab+ I = (a+ I)(b+ I) = 0+ I.
Since I is a prime ideal, either a ∈ I or b ∈ I. This implies that either a+I = I or b+I = I,
so R/I has no zero divisors. This implies that R/I is an integral domain.

Definition 2.4.2: Maximal Ideal

Let R be a commutative ring and let I ⊊ R be a proper ideal. I is a maximal ideal
if, whenever there is an ideal J such that I ⊊ J ⊆ R, we must have J = R.

Theorem 2.4.2

Let R be a commutative ring and I ⊊ R be a maximal ideal. Then I is a prime ideal.

Proof. Let R be a commutative ring and suppose I ⊊ R is a maximal ideal. Take ab ∈ I. If
a ∈ I, then we are done, so suppose not. Then consider I + (a) ⊋ I. Since I is maximal, we
have that I + (a) = R. Then 1 = x + ar for some x ∈ I, ar ∈ (a). Multiplying both sides
by b ∈ R, we get b = b(x + ar) = bx+ abr. Since ab ∈ I, we have that (ab)r ∈ I. Further,
since x ∈ I, xb ∈ I, so bx+ abr = b ∈ I. This implies that I is a prime ideal.

Note: From now on, I will only state “I is prime/maximal” instead of saying “I is a
prime/maximal ideal”.

Theorem 2.4.3

Let R be a commutative ring and I ⊊ R be a proper ideal. I is maximal if and only
if R/I is a field.

Proof. Let R be a commutative ring and suppose I ⊊ R is a proper ideal.

( =⇒ ) Suppose I is maximal. Pick a nonzero a + I ∈ R/I. Since a + I ̸= 0 + I, a ̸∈ I.
Consider I+(a) ⊋ I. Since I is maximal, we have that I+(a) = R. Then 1 = x+ab for some
x ∈ I, ab ∈ (a), so we have (x+ab)+I = (x+I)+(ab+I) = 1+I. Since x ∈ I, we have that
x+I = 0+I. This implies that (x+I)+(ab+I) = (0+I)+(ab+I) = (a+I)(b+I) = 1+I.
So a+ I ∈ R/I is a unit. Since a+ I ∈ R/I was arbitrary, R/I is a field.

( ⇐= ) Suppose R/I is a field. Pick a ∈ R \ I. Then a+ I ∈ R/I is nonzero, so there exists
b + I ∈ R/I such that (a + I)(b + I) = ab + I = 1 + I. Then ab − 1 ∈ I, so there exists
x ∈ I such that x = ab − 1, or 1 = ab − x. Then since −x ∈ I and ab ∈ (a), we have that
ab− x = 1 ∈ I + (a), so I + (a) = R. Therefore, I is maximal.
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3 Polynomial Rings over Fields

Preface: Throughout this section, F is a field and F [x] are the polynomials with coefficients

in F . Recall that given f ∈ F [x], we can uniquely express f(x) as
n∑

i=0

aix
i, where an is

nonzero.
Note: The notation f(x) and f are interchangeable.

Definition 3.0.1: Associate

Let f, g ∈ F [x]. f and g are associates if there is some nonzero c ∈ F such that
g = cf .

Definition 3.0.2: Degree

Let f ∈ F [x] be expressed as f(x) =
n∑

i=0

aix
i, where an ̸= 0. The degree of f is

written as deg(f) = n.

Let f, g ∈ F [x]. The following hold:

(1) deg(f + g) ≤ max{deg(f), deg(g)}.

(2) deg(fg) = deg(f) + deg(g).

Note: The zero polynomial has a degree of −∞ by convention.

Definition 3.0.3: Monic Polynomial

Let f ∈ F [x]. f is monic if its leading term is 1.

The rest of this page is intentionally left blank.
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Theorem 3.0.1 (Division Algorithm [Polynomials])

Let f, g ∈ F [x] such that g ̸= 0. Then there are unique polynomials q, r ∈ F [x] such
that f = gq + r, where deg(r) < deg(g).

Proof. Existence: Let f, g ∈ F [x] such that g ̸= 0 and consider S := {f−sg : s ∈ F [x]}. If s
is the zero polynomial, then f−sg = f−0g = f ∈ S, so S is not empty. Choose f−sg ∈ S to
be of least degree, and define q := s, r := f−sg. Then r = f−sg = f−qg, or f = gq+r. Since
g ̸= 0, we have that deg(g) ≥ 0. Suppose for the sake of contradiction that deg(r) ≥ deg(g).

Then r =
n∑

i=0

rix
i and g =

m∑
i=0

gix
i where n ≥ m. Since deg(r) = n, deg(g) = m, we have that

rn ̸= 0 and gm ̸= 0; i.e. they are units. Now consider t := rnx
n · (gmxm)−1 = rng

−1
m xn−m.

Then

tg =
(
rng

−1
m xn−m

)
·

(
m∑
i=0

gix
i

)
=

(
m−1∑
i=0

rng
−1
m gix

n−m+i

)
+ rnx

n

so

r − tg =

(
n−1∑
i=0

rix
i

)
+ rnx

n −

((
m−1∑
i=0

rng
−1
m gix

n−m+i

)
+ rnx

n

)

=

(
n−1∑
i=0

rix
i

)
−

m−1∑
i=0

rng
−1
m gix

n−m+i

so deg(r − tg) ≤ n− 1 < n = deg(r). But we have that r = f − gs, so we get

r − tg = (f − gs)− tg = f − g(s+ t)

Since s+ t ∈ F [x], we have that r− tg ∈ S, but r was chosen to have the lowest degree and
deg(r − tg) < deg(r), a contradiction. Therefore, deg(r) < deg(g).

Uniqueness: Suppose f = gq + r = gq′ + r′ for q, q′, r, r′ ∈ F [x]. Then

gq + r = gq′ + r′

g(q − q′) = r − r′

so g | (r− r′). But deg(r− r′) < deg(g), so r = r′. Since F is a field and g ̸= 0, this implies
that q = q′. Therefore, q, r ∈ F [x] are unique.
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Definition 3.0.4: Divides (Polynomials)

Let f, g ∈ F [x]. f divides g if there is a polynomial s ∈ F [x] such that fs = g. Then
f is a divisor of g. We write f | g.

Proposition: Let f, g ∈ F [x], g ̸= 0, and suppose f divides g. Then deg(f) ≤ deg(g).

Proof. Let f, g ∈ F [x], g ̸= 0 and suppose f | g. Then there exists s ∈ F [x] such that fs = g.
Since g ̸= 0, we have that deg(g) ≥ 0. Since F is a field, we have that f ̸= 0 and s ̸= 0, so
deg(f) ≥ 0 and deg(s) ≥ 0. Then deg(g) = deg(fs) = deg(f) + deg(s). This implies that
deg(f) ≤ deg(g).

Definition 3.0.5: Greatest Common Divisor (gcd) (Polynomials)

Let f, g ∈ F [x] be polynomials such that either f ̸= 0 or g ̸= 0. The greatest
common divisor of f and g is the monic polynomial of largest degree that divides
f and g. That is, the greatest common divisor d of f and g is the monic polynomial
that satisfies the following:

(1) d | f and d | g.

(2) If a | f and a | g, then a | d.

If d is the greatest common divisor of f and g, we write d = gcd(f, g) = (f, g).

Theorem 3.0.2 (Bezout’s Identity [Polynomials])

Let f, g ∈ F [x] such that either f ̸= 0 or g ̸= 0. There exist m,n ∈ F [x] such that
fm+ gn = d, where d = (f, g).

Proof. Let f, g ∈ F [x] such that either f ̸= 0 or g ̸= 0. Consider the set S = {fm +
gn : m,n ∈ F [x]}. If m = f, n = g, then since at least one of f, g is nonzero, we have
0 ̸= fm + gn = f 2 + g2 ∈ S, so S is not empty. By the well-ordering principle, choose the
polynomial s = fm+gn ∈ S of smallest degree, and consider f = sq+r for deg(r) < deg(g).
Rearranging the second equation, we get

f = sq + r

r = f − sq

= f − (fm+ gn)q

r = f(1−mq) + g(−nq)

This implies that r ∈ S. We also have that deg(r) < deg(g), but since s was chosen to be
the smallest element in S, this forces r = 0. Then f = sq + r = sq, so s | f . Similarly,
s | g. Since s | f and s | g, s ≤ d. But d | f and d | g by definition, so d | s which implies
that d ≤ s. Therefore, d = s, where s is a linear combination of f and g. So, there exist
m,n ∈ F [x] such that d = fm+ gn, where d = (f, g).

29



Theorem 3.0.3

Let a, b, c ∈ F [x]. Suppose a | bc such that (a, b) = 1. Then a | c.

Proof. Let a, b, c ∈ F [x], and suppose a | bc such that (a, b) = 1. Then we can write 1 as a
linear combination of a and b; i.e. am+ bn = 1 for m,n ∈ F [x]. We also have that aq = bc
for some q ∈ F [x] Then

1 = am+ bn

c = c(am+ bn)

= acm+ (bc)n

= acm+ (aq)n

c = a(cm+ qn)

which implies that a | c.

3.1 Irreducibility

Definition 3.1.1: Irreducible

Let f ∈ F [x] be nonzero and nonconstant. f is irreducible if its only factors are
units and associates. Otherwise, f is reducible. That is, f is reducible if there exist
polynomials a, b ∈ F [x] of lower degree such that ab = f .

Theorem 3.1.1

Let p ∈ F [x]. The following are equivalent statements:

(1) p is irreducible.

(2) If p | ab, then p | a or p | b.

(3) If p = ab, then either a or b is a unit.

Proof. Let p ∈ F [x].

(1) =⇒ (2) Suppose p is irreducible and p | ab. If p | a, then we are done, so suppose not.
Then p | ab and (p, a) = 1 which implies p | b.
(2) =⇒ (3) Suppose that if p | ab, then p | a or p | b. Let p = ab. Then p | p = ab, so p | a
or p | b. Without loss of generality, suppose p | a. Then deg(p) ≤ deg(a). But since p = ab,
we have that deg(a), deg(b) ≤ deg(p). So, deg(p) = deg(a), which implies that b is a unit.

(3) =⇒ (1) Suppose that if p = ab, then either a or b is a unit. Without loss of generality,
suppose a is a unit. Then deg(a) = 0, so deg(p) = deg(ab) = deg(a)+deg(b) = deg(b). This
implies that b is an associate of p. Therefore, the only factors of p are units and associates,
so p is irreducible.
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Corollary 3.1.1

Let p ∈ F [x] be irreducible. If p | a1 · · · an, then p | ai for some i.

Proof. Let p ∈ F [x] be irreducible. We will induct on n ∈ N. At n = 2, if p | a1a2, then
p | a1 or p | a2. Assume the base case holds for some n ≥ 2. At n = n + 1, consider
p | a1 · · · an · an+1. Then if p | an+1, we are done. Otherwise, by the inductive hypothesis, we
have that p | ai for some i ≤ n. Therefore, if p | a1 · · · an, then p | ai for some i.

Theorem 3.1.2 (Unique Factorization [Polynomials])

Let f ∈ F [x] be nonzero and nonconstant. f can be written a a product of irreducible
polynomials. Moreover, if f = p1p2 · · · pn = q1q2 · · · qm are two irreducible factoriza-
tions, then n = m and there is a permutation σ on {1, . . . , n} such that pi and qσ(i)
are associates.

Proof. Existence: Suppose for the sake of contradiction that there exist polynomials that
cannot be written as a product of irreducible polynomials. Let S contain such polynomials.
Then since S is not empty, pick f to be the polynomial of least degree. Then if f = pq, we
have that deg(p), deg(q) ≤ deg(f). But f was chosen to be the polynomial with smallest
degree, so p, q ̸∈ S. Then p, q can be written as a product of irreducible polynomials which
implies that f can be written as a product of irreducible polynomials, a contradiction.
Therefore, S is empty which implies that all nonzero and nonconstant f ∈ F [x] can be
written as a product of irreducible polynomials.

Uniqueness: Suppose p1 · · · pn = q1 · · · qm. Without loss of generality, suppose n ≤ m.
Then p1 | q1 · · · qm. Without loss of generality, let p1 | q1. Then p1 and q1 are associates
since they are both irreducible. Then q1 = c1p1 for some unit c1 ∈ F , so we have that
p1 · · · pn = c1p1 · q2 · · · qm. Since F is a field, we can apply the cancellation property to
cancel p1, which yields p2 · · · pn = c1q2 · · · qm. Continuing this process inductively, we have
that pm+1 · · · pn = c1 · · · cm. Suppose for the sake of contradiction that m < n. Then
0 < deg(pm+1 · · · pn) = deg(c1 · · · cm) = 0, a contradiction. Therefore, m = n and there is a
unique permuatation σ on {1, . . . , n} such that pi = qσ(i).
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3.2 Roots

Definition 3.2.1: Root

Let f ∈ F [x]. a ∈ F is a root of f if f(a) = 0.

Lemma 3.2.1

Let f ∈ F [x] and let a ∈ F [x] be a root of f . The remainder of f(x) divided by x− a
is f(a).

Proof. Let f ∈ F [x]. We can express f as f(x) = (x− a)q(x) + r(x) for unique q, r ∈ F [x].
Then f(a) = (a− a) + q(a) + r = 0 + r = r.

Theorem 3.2.1

Let f ∈ F [x] and a ∈ F . a is a root of f if and only if x− a is a factor of f .

Proof. Let f ∈ F [x] and a ∈ F .

( =⇒ ) Suppose a is a root of f . We can express f as f(x) = (x− a)q(x) + r(x) for unique
q, r ∈ F [x]. Then from the Lemma above, we have that f(a) = r, but since a is a root,
f(a) = 0, so r = 0 which implies that f(x) = (x− a)q(x), or (x− a) | f .
( ⇐= ) Suppose x − a is a factor of f . Then (x − a) | f , or f(x) = (x − a)q(x). Then
f(a) = (a− a)q(a) = 0.

Corollary 3.2.1

Let f ∈ F [x] such that deg(f) = n > 0. f has at most n roots.

Proof. Let f ∈ F [x]. such that deg(f) = n > 0. We will induct on n ∈ N. At n = 1, we
have f(x) = a0 + a1x. Clearly, f has at most one root. Assume the base case holds for all
1 ≤ k < n. At k = n, we can express f as f(x) = (x − r)q(x), where r ∈ F is a root of
f . We have that deg(q) = n− 1, so by the inductive hypothesis, q has at most n− 1 roots.
Then f has at most 1+(n−1) = n roots. Since k was arbitrary, this holds for all n ∈ N.
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3.3 Quotienting by Irreduibles

Theorem 3.3.1

Let p ∈ F [x] be a nonzero, nonconstant polynomial. The following are equivalent:

(1) p is irreducible.

(2) (p) is maximal.

(3) (p) is prime.

Proof. Let p ∈ F [x].

(1) =⇒ (2) Suppose p is irreducible. Consider the ideal (p) ⊆ F [x]. Take a ∈ F [x] \ (p).
If a is a unit, then (p) + (a) = F [x], so suppose not. Then we have that (p, a) = 1, so we
can write pf + ag = 1 for f, g ∈ F [x], so (p) + (a) = (1) = F [x]. Therefore, (p) is maximal.

(2) =⇒ (3) Suppose (p) is maximal. Since all maximal ideals are prime, (p) is prime.

(3) =⇒ (1) Suppose (p) is prime. Consider ab ∈ (p). Then ab = pr for some r ∈ F [x],
so p | ab. Then since p is prime, we have that either a ∈ (p) or b ∈ (p). Without loss of
generality, suppose a ∈ (p). Then a = ps for some s ∈ F [x], so p | a. Since the following
statements:

(1) p is irreducible.

(2) If p | ab, then p | a or p | b.

(3) If p = ab, then either a or b is a unit.

are equivalent, p is irreducible.

Corollary 3.3.1

Let p ∈ F [x] be a nonzero, nonconstant polynomial. The following are equivalent:

(1) p is irreducible.

(2) F [x]/(p) is a field.

(3) F [x]/(p) is prime.

Note: Let p ∈ F [x] be an irreducible with p(x) =
n∑

i=0

aix
i, an ̸= 0. The field F [x]/(p) consists

of elements that are of the form (p) +
n∑

i=0

cix
i, cn, ci ∈ F . Moreover,

n∑
i=0

aix
i + (p) is the zero

element. So, F [x]/(p) is F [x] rooted at p.
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4 Integral Domains

Preface: Recall that a commutative ring R is an integral domain if, whenever ab = 0 for
a, b ∈ R, we have either a = 0 or b = 0.

Definition 4.0.1: Associate (Integral Domains)

Let R be an integral domain, and let a, b ∈ R. a and b are associates if there exists
a unit c such that a = bc.

Proposition: Let the relation that two elements are associates be defined above, and written
as a ∼ b. ∼ is an equivalence relation.

Proof. Let R be an integral domain, and let a, b, c ∈ R.

(1) Pick d = 1. Then a = a · 1 = a, so a and a are associates. Therefore, ∼ is reflexive.

(2) Suppose a ∼ b. Then a = bd for some unit d ∈ R, so there exists d−1 ∈ R such that
dd−1 = 1. Multiplying both sides of the equation by d−1, we get ad−1 = bd · d−1 =
b · 1 = b, so b and a are associates. Therefore, ∼ is symmetric.

(3) Suppose a ∼ b and b ∼ c. Then a = bd, b = ce for units d, e ∈ R. Then a = bd = (ce)d.

Since d, e are units, there exist d−1, e−1 ∈ R. Consider d−1e−1 ∈ R. Multiplying d−1e−1

to both sides of the equation, we get a · d−1e−1 = c(ed) ·d−1e−1 = ce ·1 · e−1 = c ·1 = c,
so a and c are associates. Therefore, ∼ is transitive.

Because ∼ satisfies (1) - (3), ∼ is an equivalence relation.

Definition 4.0.2: Divides (Integral Domains)

Let R be an integral domain, and let a, b ∈ R. a divides b if we can find q ∈ R such
that aq = b. We write a | b.

Definition 4.0.3: Irreducible (Integral Domains)

Let R be an integral domain, and let p ∈ R be a nonunit. p is irreducible if the only
divisors of p are units and associates of p.

Proposition: Let R be an integral domain. p ∈ R is irreducible if and only if whenever
p = ab, either a or b is a unit.

Proof. Let R be an integral domain and p ∈ R.
( =⇒ ) Suppose p is irreducible. Then p | p = ab. If a is a unit, then we are done, so
suppose not. Then a is an asociate of p, so b is a unit.

( ⇐= ) Suppose “p = ab implies that either a or b is a unit”. Let a ∈ R such that a | p.
Then p = ab for some b ∈ R. If a is a unit, then b is an associate of p. If b is a unit, then
a is an associate of p. In either case, the only factors of p are units and associates, so p is
irreducible.
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Definition 4.0.4: Prime (Integral Domains)

Let R be an integral domain and let p ∈ R be a nonunit. p is prime if, whenever p | ab,
then either p | a or p | b.

Theorem 4.0.1

Let R be an integral domain, and let p ∈ R be prime. Then p is irreducible.

Proof. Let R be an integral domain. Let p ∈ R is prime and suppose p = ab. Then either
p | a or p | b. Without loss of generality, suppose p | a. Then a = pc for some c ∈ R. Then
p = ab = (pc)b). Since R is an integral domain, we apply the cancellation property to get
1 = cb. This implies that b is a unit.

Note: Irreducibles need not be prime. Take, for example, this bullshit: R = Z[
√
−5].

Here, 2 and 3 are irreducible but not prime since 2 · 3 = 6 = (1 +
√
−5)(1 −

√
−5), and

2, 3 | (1 +
√
−5)(1−

√
−5) but 2, 3 ∤ (1 +

√
−5) and 2, 3 ∤ (1−

√
−5).

Theorem 4.0.2

Let R be an integral domain, and let p ∈ R. The principal ideal (p) is prime if and
only if p is prime.

Proof. Let R be an integral domain and p ∈ R such that (p) ⊆ R is principal.

( =⇒ ) Suppose (p) is prime. Take ab ∈ (p). Then ab = pr for some r ∈ R, so p | ab. Since
(p) is prime, either a ∈ (p) or b ∈ (p). Then either p | a or p | b, so p is prime.

( ⇐= ) Suppose p is prime. Let a, b ∈ R such that ab ∈ (p). Then ab = pr for some r ∈ R,
so p | ab. Since p is prime, either p | a or p | b; that is, either a ∈ (p) or b ∈ (p). This implies
that (p) is prime.

Notation: Let R be an integral domain. Define R∗ to be the nonzero elements of R.
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Lemma 4.0.1

Let R be an integral domain. Consider S(R) := {(a, b) : a, b ∈ R; b ̸= 0}]. The relation
(a, b) ∼ (a′, b′) if and only if ab′ = a′b forms an equivalence relation.

Proof. Let R be an integral domain, and consider S(R) := {(a, b) : a, b ∈ R; b ̸= 0}]. Let
(a, b), (c, d), (e, f) ∈ S(R).

(1) (a, b) ∼ (a, b) ⇐⇒ ab = ba ⇐⇒ ab = ab ⇐⇒ (a, b) ∼ (a, b). Therefore, ∼ is
reflexive.

(2) (a, b) ∼ (c, d) ⇐⇒ ad = bc ⇐⇒ ad = bc ⇐⇒ bc = ad ⇐⇒ (c, d) ∼ (a, b).
Therefore, ∼ is symmetric.

(3) Suppose (a, b) ∼ (c, d) ⇐⇒ ad = bc and (c, d) ∼ (e, f) ⇐⇒ cf = de. Then

ad = bc

(ad)f = b(cf)

(bc)f = b(de)

(af)d = (be)d

af = be ⇐⇒ (a, b) ∼ (e, f) d ̸= 0, so apply cancellation property

Therefore, ∼ is transitive.

Because ∼ satisfies (1) - (3), ∼ is an equivalence relation.

Definition 4.0.5: Addition and Multiplication in S(R)

Define + and · in S(R) by (a, b) + (c, d) = (ad+ bc, bd) and (a, b) · (c, d) = (ab, cd).

Lemma 4.0.2

Suppose R is an integral domain. Suppose (a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d′), where
(a, b), (a′, b′), (c, d), (c′, d′) ∈ S(R). Then (ad, bc) ∼ (a′d′, b′c′) and (ad + bc, bd) ∼
(a′d+ b′c′, b′d′).

Proof. Suppose R is an integral domain and let (a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d′), where
(a, b), (a′, b′), (c, d), (c′, d′) ∈ S(R). By definition, we have that ab′ = a′b and cd′ = c′d. Then

ad · b′d′ = (ab′)(cd′) = (a′b)(c′d) = a′d′ · b′c′

and

(ad+ bc) · b′d′ = adb′d′ + bcb′d′

= (ab′)dd′ + (cd′)bb′

= (a′b)dd′ + (c′d)bb′ ab′ = a′b, cd′ = c′d

= (a′d′)(bd) + (b′c′)(bd)

(ad+ bc) · b′d′ = (a′d′ + b′c′) · bd

So (ad, bc) ∼ (a′d′, b′c′) and (ad+ bc, bd) ∼ (a′d+ b′c′, b′d′).
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Definition 4.0.6: Field of Fractions

Let R be an integral domain. Define Frac(R) = S(R)/ ∼ as the field of fractions for
R, where addition and multiplication are defined by [(a, b)] + [(c, d)] = [(ad + bc, bd)]
and [(a, b)] · [(c, d)] = [(ac, bd)], respectively. Notation: We will refer to [(a, b)] as a

b
.

Theorem 4.0.3

Let R be an integral domain. Frac(R) forms a field, and R can be viewed as a subring.

Proof. I’m not checking the ring axioms for Frac(R) lol.

Let R be an integral domain. Take a
b
∈ Frac(R) to be nonzero. Then since a, b ̸= 0, the

inverse of a
b
is b

a
. Consider the function f : R → Frac(R) with r 7→ r

1
. Then

(1) f(a+ b) = a+b
1

= a
1
+ b

1
= f(a) + f(b), so f is closed under addition.

(2) f(a · b) = a·b
1
= a

1
· b
1
= f(a) · f(b), so f is closed under multiplication.

(3) f(1R) =
1R
1
= 1Frac(R), so the multiplicative identity is preserved.

so f is a ring homomorphism. Therefore, R is a subring of Frac(R).

Corollary 4.0.1

Let F be a field. Frac(F ) ≃ F .

Proof. Let F be a field. Consider the ring homomorphism f : F → Frac(F ) with r 7→ r
1
.

Take a nonzero r ∈ R. Then f(r) = r
1
̸= 0, so r ̸∈ ker(f). This implies that ker(f) = {0}, so

f is injective. Take any a
b
∈ Frac(R) for a, b ∈ R. Since b ̸= 0, there exists b−1 ∈ R such

that bb−1 = 1. Consider x = ab−1 ∈ R. Then

a = a · 1
= a · bb−1

= ab−1 · b
a · 1 = x · b ⇐⇒ (a, b) ∼ (x, 1)

so f(x) = x
1
= ab−1

1
= a

b
, which shows that f is surjective. Since f is injective and surjective,

f is a bijection. Therefore, Frac(F ) ≃ F .
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4.1 Euclidean Domains

Definition 4.1.1: Norm

Let R be an integral domain. A norm is a non-negative function N : R → Z such
that

(1) N(0R) = 0.

(2) Given a, b ∈ R with b ̸= 0, there exists q such that a = bq + r where r = 0 or
N(r) < N(b).

Definition 4.1.2: Euclidean Domain

Let R be an integral domain. R is a Euclidean domain if there exists a norm function
N : R → Z.

Theorem 4.1.1

Let R be a Euclidean domain, and let I ⊆ R be an ideal. I is principal.

Proof. If I = {0}, then I = (0) which is principal, so we are done. If I ̸= {0}, Then pick a
nonzero d ∈ I to have the smallest nonzero norm.

((d) ⊆ I) Since d ∈ I, we have that ad, da ∈ I for all a ∈ R by definition, so (d) ⊆ I.

((d) ⊇ I) Take a ∈ I. Since d ̸= 0, we can write a = dq + r for some q ∈ R. Then since
a, dq ∈ I, we necessarily have that r ∈ I. Then N(r) < N(d), but d was chosen to have the
smallest norm, so r is necessarily 0. Then, I ∋ a = dq ∈ (d), so we have that I ⊆ (d).

Therefore, (d) = I, so I is principal.

Definition 4.1.3: Greatest Common Divisor (Euclidean Domains)

Let R be a commutative ring, and a, b ∈ R with b ̸= 0. A greatest common divisor
of a and b is an element of d ∈ R such that

(1) d | a and d | b.

(2) Whenever there is another c ∈ R such that c | a and c | b, then c | d.
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Proposition: Let R be a Euclidean domain and let a, b ∈ R such that b ̸= 0, and let d be
a greatest common divisor of a and b. Then d′ ∈ R is also a greatest common divisor of a
and b if and only if d′ is an associate of d.

Proof. Let R be a Euclidean domain and let a, b ∈ R such that b ̸= 0, and let d be a greatest
common divisor of a and b. Consider d′ ∈ R.

( =⇒ ) Suppose d′ is also a greatest common divisor of a and b. Then since d′ | a and d′ | b,
by definition, we have d′ | d, so d = d′p for some p ∈ R. But we also have that d | a and
d | b, and by definition d | d′, so d′ = dq for some q ∈ R. Then

d = d′p

d = (dq)p

1 = qp d ̸= 0, R is an integral domain, so apply the cancellation property

so d′ and d are associates.

( ⇐= ) Suppose d′ is an associate of d. Then there exists a unit c ∈ R such that d = d′c,
so d′ | d by definition. Since d is a greatest common divisor, we have that d | a and d | b, so
a = dp, b = dq for p, q ∈ R. This implies that d′ | dp = a and d′ | dq = b, so d′ | a and d′ | b,
so d′ is also a greatest common divisor of a and b.

Therefore, d′ is another greatest common divisor for a and b if and only if d′ is an associate
of d.

Theorem 4.1.2

Let R be a Euclidean domain, and let a, b ∈ R such that b ̸= 0. Suppose d is such
that (d) = (a, b). Then d is a greatest common divisor of a and b.

Proof. Let R be a Euclidean domain, and let a, b ∈ R such that b ̸= 0. Suppose d is a such
that (d) = (a, b). Then a, b ∈ (a, b) = (d), so we can express them as a = dp, b = dq for
p, q ∈ R. This means d | a and d | b. Now suppose that we have c ∈ R such that c | a and
c | b. Then a = cr, b = cs for r, s ∈ R, so we can write d = ap+bq = (cr)p+(cs)q = c(rp+sq),
which implies that c | d. Therefore, d is a greatest common divisor of a and b.
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4.2 Principal Ideal Domains

Definition 4.2.1: Principal Ideal Domain (PID)

Let R be an integral domain. R is a principal ideal domain (PID) if every ideal
of R is principal. That is, given an ideal I ⊆ R, we can find a ∈ R such that I = (a).

Note: Since all ideals in a Euclidean domain are principal, they are also PID’s.

Theorem 4.2.1

Let R be a PID, and let a, b ∈ R with b ̸= 0. Let d ∈ R be such that (d) = (a, b).
Then d is a greatest common divisor of R. Moreover, d′ ∈ R is a greatest common
divisor of a and b if and only if d′ is an associate of d.

Proof. Let R be a principal ideal domain and let a, b ∈ R such that b ̸= 0, and let d be a
greatest common divisor of a and b. Consider d′ ∈ R.

( =⇒ ) Suppose d′ is also a greatest common divisor of a and b. Then since d′ | a and d′ | b,
by definition, we have d′ | d, so d = d′p for some p ∈ R. But we also have that d | a and
d | b, and by definition d | d′, so d′ = dq for some q ∈ R. Then

d = d′p

d = (dq)p

1 = qp d ̸= 0, R is an integral domain, so apply the cancellation property

so d′ and d are associates.

( ⇐= ) Suppose d′ is an associate of d. Then there exists a unit c ∈ R such that d = d′c,
so d′ | d by definition. Since d is a greatest common divisor, we have that d | a and d | b, so
a = dp, b = dq for p, q ∈ R. This implies that d′ | dp = a and d′ | dq = b, so d′ | a and d′ | b,
so d′ is also a greatest common divisor of a and b.

Therefore, d′ is another greatest common divisor for a and b if and only if d′ is an associate
of d.

Proposition: Let R be a PID and P ⊆ R be a nonzero prime ideal. Then P is maximal.

Proof. Let R be a PID and suppose that (p) = P ⊆ R is a nonzero prime ideal. Suppose
(p) = P ⊊ M = (m). Since p ∈ (p) ⊊ (m), p = mr for some r ∈ R. But since (p) is prime,
either m ∈ P or r ∈ P . If m ∈ P , then we are done since M = (m) ⊆ (p) = P . If r ∈ P ,
then r = ps for s ∈ R. Then p = mr = mps. Since R is an integral domain and p ̸= 0, apply
the cancellation property to get 1 = ms, which shows that (m) = M = R. Therefore, P is
maximal.
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Corollary 4.2.1

Let R be a commutative ring and suppose the polynomial ring R[x] is a PID. Then R
is a field.

Proof. Let R be an integral domain and R[x] a principal ideal domain. Consider the principal
ideal (x) ⊆ R[x] and a function f : R[x] → R with f(p(x)) = p(0). Then

• f(p(x) + q(x)) = p(0) + q(0) = f(p(x)) + f(q(x)), so f is closed under addition.

• f(p(x) · q(x)) = p(0) · q(0) = f(p(x)) · f(q(x)), so f is closed under multiplication.

• f(1(x)) = 1, so f preserves the multiplicative identity.

so f is a ring homomorphism. We have that ker(f) = {p(x) : f(p(x)) = 0} = (x), so
ker(f) = (x). To show Im(f) = R, take a ∈ R. Then consider p ∈ R such that p(0) = a.
Then f(p(x)) = p(0) = a ∈ R. Therefore, Im(f) = R. Then we have that R[x]/(x) ≃ R by
the First Isomorphism Theorem.

Note that since 1 ̸∈ (x), (x) ̸= R[x], so (x) ⊊ R[x] is a proper ideal. To show that (x)
is maximal, consider (y) ⊆ R[x] such that (y) ⊇ (x). If deg(y) = 0, then y is a unit, so
(y) = R[x]. If deg(y) > 0, then since x ∈ (x) ⊆ (y), we can write x = fy for some f ∈ R[x].
Then since deg(x) = 1, deg(y) ≤ deg(x) = 1, which means we necessarily have deg(y) = 1.
Then x and y are associates, so (x) = (y). Therefore, (x) is maximal, so R[x]/(x) is a field.
But since R[x]/(x) ≃ R, we have that R is a field.

Proposition: Let R be a PID and p ∈ R be irreducible. Then p is prime.

Proof. Suppose p is irreducible and consider (p) ⊆ I = (a). Because p ∈ (a), we have that
p = ab for some b ∈ R. Then a or b is a unit. If a is a unit, then (a) = I = R. If b is a unit,
then a and b are associates, so (a) = (p). Then either I = R or I = (p), so (p) is maximal
and therefore prime.

Definition 4.2.2: Ascending Chain Condition

Let R be an integral domain. R satisifes the ascending chain condition on principal
ideals if, whenver we have a chain of inclusions of ideals given by

(a1) ⊆ (a2) ⊆ · · ·

where each ai ∈ R, there exists a positive integer n such that for all m ≥ n, we have
(am) = (an).
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Lemma 4.2.1

Let R be an integral domain and I1 ⊆ I2 ⊆ · · · be a chain of ideals in R. Their union⋃
j Ij is also an ideal.

Proof. Let R be an integral domain and I1 ⊆ I2 ⊆ · · · a chain of ideals in R.

(1) Since I1 is an ideal, 0 ∈ I1 ⊆
⋃

j Ij, so
⋃

j Ij preserves the additive identity.

(2) Take a ∈ In and b ∈ Im. Without loss of generality, suppose n ≤ m. Then a, b ∈ Im,
so a− b ∈ Im ⊆

⋃
j Ij, so

⋃
j Ij is closed under subtraction.

(3) Take a ∈ In and r ∈ R. Since In is an ideal, ar, ra ∈ In ⊆
⋃

j Ij, so
⋃

j Ij is closed
under absorption.

Since
⋃

j Ij satisfies (1)-(3),
⋃

j Ij is an ideal.

Theorem 4.2.2

A PID satisfies the ascending chain condition on principal ideals.

Proof. Suppose we have an ascending chain of ideals given by

(a1) ⊆ (a2) ⊆ · · ·

Consider their union, I =
⋃

j(aj). Because I ⊆ R is principal, we can represent I = (a) for
a ∈ R. Then a ∈ (an) for some positive n ∈ N. This implies that a ⊆ (am) for m ≥ n,
so (a) ⊆ (am). But we also have that (am) ⊆ I = (a), so (am) = (a) for every m ≥ n. In
particular, (am) = (an) for all m ≥ n.

Note: This tells us that we do not have ideals that are arbitrarily big but not the entire ring
itself. More concretely, the ascending chain condition gives us prime factorizations a PID.

Theorem 4.2.3

Let R be an integral domain that satisfies the ascending chain condition on principal
ideals. Let r ∈ R be nonzero and a nonunit. r can be expressed as a product of
irreducible elements.

Proof. Let R be an integral domain that satisfies the ascending chain condition on principal
ideals. Let r ∈ R be nonzero and a nonunit. If r is irreducible, we are done, so suppose not.
Suppose for the sake of contradiciton that r cannot be written as a product of irreducibles.
Then since r is not irreducible, we can express r = r11r

1
2 such that neither r11 nor r12 are

units. Then at least one of r11 or r12 cannot be a product of irreducibles, since otherwise, r
would be a product of irreducibles. Without loss of generality, suppose r11 is not a product of
irreducibles. Then r11 can be written as r21r

2
2 where neither r21 nor r22 are units. We continue

this process inductively to get r11, · · · where ri+1
1 is a proper factor of ri1 for each i. This gives

us a chain of principal ideals given by (r11) ⊊ (r21) ⊊ · · · . This is a contradiction to the claim
that R satisfies the ascending chain condition. Therefore, r can be expressed as a product
of irreducibles.
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Corollary 4.2.2

Because PID’s satisfy the ascending chain condition on principal ideals, every nonzero
and nonunit decomposes as a product of irreducibles. Further, since irreducibles are
prime in a PID, every nonzero and nonunit decomposes as a product of primes.

Theorem 4.2.4

Let R be a PID and r ∈ R. r has a unique prime factorization. That is, if p1 · · · pn =
q1 · · · qm are both prime factorizations of r, then n = m and there is a permutation σ
on 1, . . . , n such that for every i, we have that pi and qσ(i) are associates.

Proof. Let R be a PID and r ∈ R. Suppose for the sake of contradiction that we have two
factorizations p1 · · · pn, q1 · · · qm of r, where pi, qj are prime. Then p1 | q1 · · · qm. This implies
that p1 | qi for some i. Without loss of generality, suppose p1 | q1. Since p1, q1 are irreducible,
they are associates, so q1 = ap1 for a ∈ R a unit. Then p1 · · · pn = ap1 ·q2 · · · qm. Because R is
an integral domain, we apply the cancellation property to get p2 · · · pn = aq2 · · · qm. Without
loss of generality, suppose n < m. Continuing this process iteratively, we eventually get
1 = a1 · · · an ·qn+1 · · · qm. This implies that qn+1 · · · qm are units, a contradiction. Therefore, r
has a unique factorization and there is a permutation σ on {1, . . . , n} such that pi = qσ(i).

4.3 Unique Factorization Domain

Definition 4.3.1: Unique Factorization Domain

Let R be an integral domain. R is a unique factorization domain if, given a nonzero
and nonunit r ∈ R, the following hold:

(1) r can be factored as a product of irreducibles. That is, we can express r =
p1 · · · pn where pi is irreducible.

(2) The factorization of r is unique. That is, if p1 · · · pn = q1 · · · qm are both factor-
izations of r, then n = m and there is a permutation σ on 1, . . . n such that for
every i, we have that pi and qσ(i) are associates.

Remark: Any PID is a UFD.

Example: Let F be a field. F [x1, . . . , xn] is a UFD, but not a PID since (x1, x2) is not
principal.

Example: Z[x] is a UFD, but not a PID since (2, x) is not principal.

Example: If R is a UFD, then R[x] is a UFD.
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Theorem 4.3.1

Let R be a UFD and let r ∈ R. r is prime if and only if it is irreducible.

Proof. Let R be a UFD and let r ∈ R.

( =⇒ ) Since R is an integral domain, primes are irreducible.

( ⇐= ) Suppose r ∈ R is irreducible and r | ab for a, b ∈ R. We can write ab = rc for
some c ∈ R. If a is a unit, then there exists a−1 ∈ R, so we have rca−1 = b. This implies
that r | b. If neither a or b is a unit, then consider their unique factorizations a = p1 · · · pn
and b = q1 · · · qm. Note that c cannot be a unit since otherwise, we have r = c−1ab, which
implies that r is reducible. Then c = t1 · · · ts for pi, qj, tk all irreducible. We now have that
p1 · · · pn, q1 · · · qm, and r · t1 · · · ts are all factorizations of ab. Therefore, since r is irreducible
by assumption, it must be associates with some pi or qj. If r and pi are associates, then
r | a. Similarly, if r and qj are associates, then r | b. Therefore, r is prime.

Theorem 4.3.2

Let R be a UFD and suppose a, b ∈ R. Let a = upe11 · · · penn and b = vpf11 · · · pfnn be
prime factorizations where u, v are units and each pi is a distinct prime. For each n,
let mi = min{ei, fi}. Then d = upm1

1 · · · pmn
n is a greatest common divisor of a and b.

Proof. Let R be a UFD and suppose a, b ∈ R. Let a = upe11 · · · penn and b = vpf11 · · · pfnn be
prime factorizations where u, v are units and each pi is a distinct prime. For each n, let
mi = min{ei, fi}. Consider d = upm1

1 · · · pmn
n . Clearly, d | a and d | b since mi ≤ ei, fi.

Suppose we have c ∈ R such that c | a and c | b. Then consider the prime factorization
c = wqg11 · · · qgnn , where w is a unit and qi is a distinct prime. Since qi | c, we also have qi | a
and qi | b, which implies qi | pj for some pj. Without loss of generality, suppose qi | pi. Then
gi ≤ min{ei, fi} = mi, which implies that c | d.
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Theorem 4.3.3

Let R be an integral domain. R is a UFD if and only if R satisfies the ascending chain
condition on principal ideals and irreducible elements of R are prime.

Proof. Let R be an integral domain.

( =⇒ ) Suppose R is a UFD. Note that since R is a UFD, irreducible elements are prime.
Consider the ascending chain of ideals given by

(a1) ⊆ (a2) ⊆ · · ·

for a1, a2, · · · ∈ R. Consider the unique factorization a1 = pr11 · · · prkk , where pi is a distinct
prime. Then an | a1, so an can be written as an associate of ps11 · · · pskk where 0 ≤ si ≤ ri.
For all m ≥ n, we have that (an) ⊆ (am) by construction. Then am | an, so we can represent
am = pt11 · · · ptkk where 0 ≤ ti ≤ si for all i. Therefore, R satisfies the ascending chain
condition on principal ideals. By Theorem 4.3.1, irreducible elements are prime in a UFD.

( ⇐= ) Suppose R satisfies the ascending chain condition on principal ideals and irreducible
elements of R are prime. Take r ∈ R. By Theorem 4.2.3, r can be written as a product of
irreducibles. To show that it is unique, suppose for the sake of contradiction that r has two
different factorizations r = p1 · · · pn = q1 · · · qm where pi, qj are irreducible. Then p1 is prime
since it is irreducible, so it must divide some qj. Without loss of generality, suppose p1 | q1.
Then p1, q1 are associates so we have that p1 · · · pn = ap1q2 · · · qm where a ∈ R is a unit. Since
we are over an integral domain, apply the cancellation property to get p2 · · · pn = aq2 · · · qm.
Without loss of generality, suppose n ≤ m. Then applying the previous steps iteratively,
we are left with 1 = a1 · · · anqn+1 · · · qm. But this implies that qn+1, · · · , qm are units, a
contradiction. Therefore, m = n so r has a unique factorization. Therefore, R is a UFD.

∼ End of Course Material ∼
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5 Epilogue

Disclaimer: Whatever your professor says goes! Don’t take my word for it, I’m just a
student lol.

Thanks for reading my notes!
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