Monotone Convergence Theorem: Monotone inc/dec and bounded above/below —> (z,) converges.
Bolzono-Weirstrauss Theorem: Bounded = 3(z,,, ) that converges.

Squeeze Theorem: Given (x,,), (yn), (zn): yn < p < z,¥n € Nand y, — x, 2z, = x as n — 00, T, — T as N — 00.
Test for Divergence: (z,) /0 = > z,, does not converge.

Cauchy Sequence: Ve > 0,3N € N : Vn m > N, \acn xm\ < e. Note: (x,) is cauchy <= (x,) converges in R only.

Geometric Series: Given z € R, S, Z ah = 1= g £, lz] <1 = Sp = 7 = (2)" = 0by ALT. |[z| >1 = S, = +o0.
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Comparison Test: Assume y,, > 0 Vn > N If |xn| < ynVn € N, then:
(i) > yn converges = > x, converges.

(ii) > |zy| diverges = >y, diverges.

(i) Yyp = +0 & 2y > yn, VRN = >z, — +00.

Absolute Convergence Test: Y |z,| converges = > x,, converges.
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Cauchy Condensation Test: Given (z,) decreasing and nonnegative T, converges <—- 2" xon converges.
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Cauchy Criterion: ) z, converges <= Ve >0,IN eN:n>m >N = |z, + -+ 2, <e.
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p-series Test: > ni converges <= p > 1.
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Ratio Test: Given x,, # 0, lim

Tn+41
n-soo | Tn

= L converges absolutely if L < 1, diverges if L > 1, inconclusive if L = 1.

Root Test: Given x,, lim \xn| n = L converges absolutely if L < 1, diverges if L > 1, inconclusive if L = 1.
n—oo

Alternating Series Test: If a sequence (z,,) is decreasing and converges to 0, then Y (—1)"*1z, converges.
Exponent rules with e: z¢ = ¢*lo8?
Existance of Limits: lim f(z) exists <— hm f(z) = hm f(z)

Continuity (e,9): f: A —> R is continuous at c 6 Aif Ve > 0 36 > 0 s.t. whenever z € A, |z — ¢| < 0, we have f(z) — f(¢)| <e.
Functional Limit (g,0): hinf( z)=L <= force Ly if Ve > 0,36 > 0 s.t. whenever x € 4,0 < |33— ¢l < 6, we have f(z) — L| <e.

Prove using the (g,6) definition that f(z) = \/z + /z is continuous on [0, +c0).

Scratch: Case 1: ¢ =0. Then, |f(z) — f(0)| =z + vz < V2y/z =25271. £ <6 = 6 < 1t

Proof: Let ¢ > 0. Choose § = min {1, +¢*}. Then, |f(z) — f(0)| = Vr+ e <\/2yx = 2727 < & whenever 0 < z < 4.
Scratch Case 2: ¢ # 0. Then, we have:
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Proof: Let £ > 0. Choose § = Ja1 € By above, we have |f(z) — f(c)| < ﬁmé =¢

Let (x,), (yn), (zn) be sequences of real numbers such that there exists Ny € N for which y, <z, < z, for all n > Ny. If
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the series > y, and ) z, converge, show that the series > 1z, converges.
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Proof: Let € > 0. Since the series > yx, . 2z converge, they satisfy the Cauchy criterion, so N7, No € N s.t.
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<egforalln>m > N;
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Thus, > x,, satisfies the Cauchy criterion, so the series converges.
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Let N = max{Ny, N1, Na}. Then by assumption,
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Study the convergence of 22 %
e

Proof: Let z, = (1227;;“ Apply the root test:

nlogn e(log n)?2
el < =S
logn logn
(A
: (log n)* ") _ 1 1
Then, there exists N € N s.t. forn > N, T’ <4 = T < TN S0 forn> N
el <
T =
=N logn
Since lim logn = 400 and logn > 1 for n > 2, lim % = 0. By ALT and squeeze theorem, lim |z, "=0<1. So by the root test, z,
n—oo 08N n—00

71— 00
converges.
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Decide if the following series converges: »_ 2-Vn
n=1

Solution: We will use the Cauchy condensation test. Let z, = 2~V" and consider

n n
Yn = 2nm2n — enlog26—22 log2 _ e—(logZ)(ZZ —n)’

We claim that 2n < 2%/2 for all n. > 8. We can prove this by induction on n. The base step
is an equality. For the inductive step, we have

2An+1)=2n+2<2¥2 42
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and we are done provided that we can show that 22 +2 < 232% = 2"F. Thisis equivalent

to
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We have n > 8 and the left hand side is increasing so we only need this to be true for n = 8
which it as the LHS is 16 whilst the RHS is comfortably less than 0% = 8. Therefore,
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2% >

o < e <eem

where ¢ = (1/2)log2 and 0 < ¢ < ¢. Now this forms a geometric series which converges
so the dyadic sum Ezo:o yn, converges and thus by Cauchy condensation, the original series
>>° |z, also converges.
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Let A C R s.t. there exists a sequence (z,,) € A converging to a real number zy ¢ A. Show there exists an unbounded
continuous function on A.

Proof: Let f: A — R be given by f(z) = T_l Since zp &€ A, f(x) is well-defined on all of A. It is clearly continuous by the ALT. We
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show it is unbounded. Let M > 0 be given and choose & = 7. Since z,, — z, there exists N € Ns.t. |z, —zo| <e. So|f(z)| = I:rriizm > M.

Prove lim &8 =0
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Note that when n > 6, we have that |n + 6| < 2n, |n2—6\2%n2.
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Let £ > 0. Let N > max {2,6}. Then Vn > N, we have

4
n > max{—,6} = <-—<c¢
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